
i

DEVELOPMENT OF HEURISTICS FOR SINGLE PROCESSOR

SCHEDULING PROBLEMS WITH TARDINESS - RELATED

PERFORMANCE MEASURES

BY

SAHEED AKANDE

MATRIC. NO.: 153264

B.Sc.(Hons) Metallurgical and Materials Engineering (Ife)

M.Sc. Industrial and Production Engineering (Ibadan)

MNSE, MNIIE, Regd. Engr.

A Thesis written in the Department of

INDUSTRIAL AND PRODUCTION ENGINEERING

Submitted to the Faculty of Technology

in partial fulfilment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF IBADAN.

JUNE, 2017

ii

ABSTRACT

Scheduling problems involve the processing of jobs on processor(s) subject to

constraints to optimise performance measures. Determining schedules that minimise

tardiness-related performance measures for single processor scheduling problems is

complex. Optimal-solutions require prohibitive-time, therefore heuristics are explored

in real-life but effectiveness of existing heuristics is inadequate. The objective of this

study was to develop effective heuristics for minimizing tardiness-related performance

measures for single processor scheduling problems.

Six heuristics were developed and compared to the existing heuristics for minimizing

the Total-Tardiness of jobs with Release-Dates (2TRD), Total-Tardiness and Total-

Flowtime of jobs with Zero-Release-Dates (3TFZRD) and Total-Tardiness and Total-

Flowtime of jobs with Release-Dates (3TFRD). HeuristicI (HeuI) and HeuristicII

(HeuII) developed for 2TRD problem were compared to Dynamic Modified Due Date

(DMDD). For 3TFZRD problem, heuristicIII (HeuIII) and heuristicIV (HeuIV)

developed were compared to heuristicA (HeuA). Generalised Algorithm (GAlg) was

compared to heuristicV (HeuV) and heuristicVI (HeuVI) developed for 3TFRD. HeuI

and HeuII schedule jobs to reduce lateness. HeuIII and HeuIV reduce waiting-time.

HeuV and HeuIV reduce idle-time and waiting-time. Fifty instances each, for problem-

sizes (n) from small-sized (5≤n≤10), medium-sized (10<n<30), and large-sized

(30≤n≤1000) randomly generated and industry-based problems involving 5, 10 and 15

jobs were solved in editor module in MATLAB environment. The Branch and Bound

(BB) optimal method was used to solve small-and medium-sized problems. For

3TFZRD and 3TFRD problems, a composite-function was formulated and normalised.

The Approximation Ratio (AR) test evaluated the heuristics’ effectiveness, significant

differences were analysed using t-test at 𝛼0.05.

The small-sized problems objective-function were: BB (9.26±9.12), HeuI

(16.32±17.38), HeuII (12.03±10.02), DMDD (20.02±15.21) for 2TRD; BB

(0.3059±0.0190), HeuIII (0.3059±0.0190), HeuIV (0.3192±0.0010), HeuA

(0.3191±0.0200) for 3TFZRD; BB (0.1664±0.0043), HeuV (0.2350±0.0090), HeuVI

(0.2096±0.0094), GAlg (0.3875±0.0380) for 3TFRD. HeuII, HeuIII and HeuVI yielded

the AR of 1.85±1.22, 1.00±0.00 and 1.26±0.09 compared to DMDD (4.42±4.33), HeuA

iii

(1.05±0.013) and GAlg (2.33±0.176), respectively. The medium-sized problems

objective-function were: BB (287.11±138.54), HeuI (442.15±197.36), HeuII

(432.48±137.86), DMDD (449.03±135.54) for 2TRD; BB (0.3397±0.0047), HeuIII

(0.3398±0.0201), HeuIV (0.3403±0.0204), HeuA (0.3629±0.0239) for 3TFZRD; BB

(0.2410±0.0550), HeuV (0.3395±0.0520), HeuVI (0.3275±0.0530), GAlg

(0.6191±0.0440) for 3TFRD. Considering the small-and-medium-sized problems, HeuII

and HeuIII were not significantly different from the optimal. The large-sized problems

objective-function were: HeuI (254,046±8215), HeuII (311,184±11,643), DMDD

(303,044±8642) for 2TRD; HeuIII (0.3492±0.0024), HeuIV (0.3493±0.0024), HeuA

(0.3736 ±0.0029) for 3TFZRD; HeuV (0.5511±0.0670), HeuVI (0.5473±0.0690), GAlg

(0.7589±0.0960) for 3TFRD. Therefore, regarding 2TRD problem, HeuII was

recommended when solving small-and-medium-sized problems and HeuI for large-

sized. Considering 3TFZRD and 3TFRD problems, HeuIII and HeuVI were respectively

recommended for all the problem sizes. With respect to the industry-based problems,

HeuII, HeuIII and HeuVI were (44.3±36.9%), (182.7±113.8%) and (39.0±25.4%),

respectively better than firm policies; First-Come-First-Served for 2TRD and 3TFZRD,

Shortest-Processing-Time for 3TFRD.

The developed heuristics minimised tardiness-related performance measures for single

processor scheduling problems and were more effective compared to the existing ones.

Keywords: Single Processor Scheduling, Heuristic, Effectiveness, Total-Tardiness,

 Total-Flowtime

Word count: 458

iv

ACKNOWLEDGEMENT

All thanks and adoration is due to Almighty GOD for making this possible because I

could not have done it with my own efforts. He perfected the route to the success of this

work by connecting me to good people for assistance. In this regards, I am indebted to

many people in connection with this research. First of all, I wish to express my gratitude

to my supervisor, Professor Ayodeji Emmanuel Oluleye. His direction and suggestions

have been insightful and I could not have completed this research and thesis without his

support, guidance, humour and general encouragement. In fact, no word can match his

contribution to the success of this work. Furthermore, the support, encouragement and

the prayer of Professor A.A Aderoba towards this work serve as the catalyst for the

completion of the work and my thanks will always be unlimited. Moreover, this research

work would not have been accomplished without an enabling environment. This

environment in the path of career fulfilment was provided by the founder of Afe

Babalola University Ado Ekiti, Aare Afe Babalola. I will always remain grateful to you

sir for the “fruit of life you sow upon which unlimited souls are being feed”.

The implementation of the devised models required the knowledge of programing

language. Therefore, the contribution of Engr Musa Muhamma and Dr. Abdulwahab

Giwa for not just “given me a fish to eat but showed me the way of fishing” will always

remain in my heart. The use of MATrix LABoratory (MATLAB) in this research work

remains one of my pride as it makes the work to be more unique. Furthermore, the

constructive criticism and support of Professor O.E Charles-Owaba, Dr. V.O Oladokun,

Dr. C.O Anyaeche, Dr. Adeyeye, Dr. Akanbi, Engr. Tunde Odedairo are greatly

appreciated. Also, I deeply appreciate the support of the managing director of VAL-

VAL auto clinic Engineering limited located at Ibadan, Oyo state for his support

particularly in providing the real life data to demonstrate the utility of the proposed

models. The support of my students especially Adewuyi Crystal Adeola, Bashir

Olawoyin, Obisesan Ismat as well as Kelvin Ahwin is also appreciated.

Finally, I must thank my mother, my wife and my siblings for their unlimited supports,

encouragement and prayer towards the success of this work.

v

CERTIFICATION

This is to certify that Saheed Akande carried out this project under my supervision in

partial fulfilment of the requirements of a Doctor of Philosophy degree in the

Department of Industrial and Production Engineering, University of Ibadan

…………………………………………………………………………

Supervisor’s Signature

Prof. A. E. Oluleye

B.Sc. (Ibadan), M.Sc. (Cranfield), Ph.D. (Ibadan), MNSE, Reg. Engr.

Dept. of Industrial and Production Engineering

University of Ibadan, Ibadan.

Nigeria

vi

DEDICATION

This work is dedicated to the memory of my late father, Mr Tajudeen Akande; who

provided a beacon for my life by the qualities he exhibited and the principles he

embraced: Prayer, fear of GOD, love of family and dedication towards any project he

embarked on.

vii

TABLE OF CONTENTS

 Title Page

 Title Page i

 Abstract ii

 Acknowledgement iv

 Certification v

 List of Tables x

 List Of Abbreviations and Acronyms xix

 List Of Notations and their Definitions xxi

CHAPTER ONE : INTRODUCTION

 1.1 The Scheduling Problem 1

 1.2 Representation of Scheduling Problem 1

1.2.1 Processor environment 2

1.2.2 Job environment 4

1.2.3 Performance measures 4

 1.3 Classification of Scheduling Problems 6

1.3.1 Scheduling problems based on the number of processors 6

1.3.2 Scheduling problems based on the number of performance objectives 7

1.3.3 Scheduling problems based on the applied constraint 7

 1.4 Effectiveness and Efficiency 8

 1.5 Importance of Tardiness and Tardiness Related Objectives 9

 1.6 Problem Statement 10

1.6.1 Broad consideration 10

1.6.2 Problem classes 11

 1.7 Study Objectives 12

 1.8 Assumptions Made in the Study 12

 1.9 Justification for the Study 13

 1.10 Outline of the Succeeding Chapters 13

viii

CHAPTER TWO : LITERATURE REVIEW

 2.1 Introduction 15

 2.2 Historical Background of Production Scheduling 15

 2.3 Solution Methods to Scheduling Problems 17

2.3.1 Complete enumeration 17

2.3.2 Implicit enumeration techniques 17

 2.3.2.1 The Branch and Bound (BB) technique 17

2.3.3 Heuristics method 19

2.3.4 Metaheuristics method 20

 2.4 Complexity of Scheduling Problems 20

 2.5 Approaches to NP-hard Scheduling Problems 21

 2.6 Single Processor Total Tardiness Problems (SPTTP) 22

 2.7 Multi-criteria Scheduling Problems 25

2.7.1 Formulation of multi-criteria scheduling problems 25

 2.8 Solution Methods to Multi-criteria Scheduling Problems 26

2.8.1 Hierarchical or Lexicographic optimization 26

2.8.2 Simultaneous optimization method 27

2.8.3 Pareto-optimal solution approach 29

 2.9 Bi-criteria Scheduling Problems 30

CHAPTER THREE : METHODOLOGY

 3.1 Introduction 32

 3.2 The Procedure 32

 3.3 Data Analysis 36

3.3.1 The mean and standard deviation 36

3.3.2 The approximation ratio (A.R) 37

3.3.3 Test of mean (t-test) 37

3.3.4 The optimal count (OC) test 39

3.3.5 Consistency test and the ranking of the solution methods 40

ix

 3.4 The Model Implementation for Real-Life Problems 40

3.4.1 Data collection 40

 3.5 The MATrix LABoratory (MATLAB) 41

CHAPTER FOUR : MODEL DEVELOPMENT

 4.1 Introduction 42

 4.2 The Scheduling Problem of Minimizing the 2TRD 42

4.2.1 Problem definition 42

4.2.2 Materials and methods 43

4.2.3 Selected solution methods from the literature 44

4.2.4 Proposed solution methods 45

4.2.5 Application of the BB to solve the problem 47

 4.3 Bi-criteria Scheduling Problems 48

4.3.1 Problem definition 48

 4.4 Normalization 49

4.4.1 The extreme values 50

4.4.2 The proposed corollary 52

4.4.3 Argument against the corollary 52

4.4.4 Argument in favour of the corollary 54

 4.5 Solution Methods to the Bi-criteria Problems 63

4.5.1 Solution methods from the literature 63

4.5.2 Application of the BB to solve the problem 64

4.5.3 The Proposed solution methods for the Class II problem 64

4.5.4 Proposed solution methods for the Class III problem 66

 4.6 Model Implementation 68

4.6.1 Random problem generation 69

 4.7 The Real life Problem Size and the Current Firm Scheduling Policy 78

x

CHAPTER FIVE : RESULTS AND DISCUSSION

 5.1 Introduction 79

 5.2 Results Based on the Total Tardiness 79

5.2.1 Results of the selected heuristics from the literature 79

5.2.2 Results of the proposed heuristics 81

5.2.3 Approximation ratio test 83

5.2.4 The t-test 92

5.2.5 The Optimal Count (O.C) test 96

5.2.6 The consistency test 99

5.2.7 Real life results based on the total tardiness problem 101

5.2.8 Results based on the execution time with respect to the total tardiness 108

5.2.9 The t-test 110

5.2.10 The approximation ratio test for the execution time 114

 5.3 Results Based on the Bi-criteria Scheduling Problem 122

 5.4 Results Based on the Static Variant of the Bi-criteria Problem (3TFZRD)

 123

5.4.1 The t-test 125

5.4.2 The approximation ratio test 129

5.4.3 The Optimal Count (OC) test 138

5.4.4 The consistency test 142

5.4.5 Real life results based on static variant of the bicriteria problem 145

5.4.6 Results based on the efficiency for the static variant of the problem 159

 5.5 Results Based on the Dynamic Variant of the Bi-criteria Problem 173

5.5.1 Simulation results based on effectiveness 173

5.5.2 Results based on the mean execution time 191

5.5.3 Real life results based on the dynamic variant of the bicriteria Problem

 204

xi

CHAPTER SIX : SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS 217

 6.1 Introduction 217

 6.2 Summary 217

 6.3 Contribution to Knowledge 218

 6.4 Future Research and Recommendation 219

 6.5 Conclusion 219

REFERENCES 221

APPENDICES 238

xii

LIST OF TABLES

Table Title of Table Page

2.1 Some existing heuristics that solve the SPTTP with release dates 24

4.1 The maximum and the minimum possible values of the objectives 51

4.2 The extreme values of some objective functions under static

condition.

62

5.1 Mean of the total tardiness by solution methods and problem sizes 80

5.2 Mean of the total tardiness by solution methods and problem sizes 82

5.3 The overall means of approximation ratio for the small-sized

problems for the Class I

87

5.4 The overall means of approximation ration for the medium-sized

problems for the Class I

88

5.5 The overall means of approximation ratio for the large-sized

problems for the Class I

91

5.6 The t-test for mean of total tardiness for the small-sized problems

for the Class I

93

5.7 The t-test for mean of total tardiness for the medium-sized

problems for the Class I

94

5.8 The t-test for mean of total tardiness for the large- sized problems

for the Class I

95

5.9a The Optimal Count (O.C) test for the Class I 97

5.9b The t-test for the optimal count for the small- sized problems 98

5.10 The Consistency test for all the problem sizes 5≤n ≤ 1000 for the

Class I

100

5.11 The mean of the total tardiness by solution methods for real life

problems

102

xiii

5.12 Percentage gain or loss by adopting the HeuI policy 104

5.13 Average gain or loss by adopting the HeuII policy 105

5.14 Average gain or loss by adopting DMDD 106

5.15 Average gain or loss by adopting SPT 107

5.16 Mean of the execution time by solution methods and problem sizes 109

5.17 The t-test for mean execution time for the small-sized problems for

the Class I

111

5.18 The t-test for mean execution time for the medium-sized problems

for the Class I

112

5.19 The t-test for mean execution time for the large-sized problems for

the Class I

113

5.20 The overall means of the approximation ratio for the small-sized

problems for the Class I

119

5.21 The overall means of the approximation ratio for the medium-sized

problems for the Class I

120

5.22 The overall means of the approximation ratio for the large-sized

problems for the Class I

121

5.23 Mean value of the normalized total LCOF by solution methods for

the Class II

124

5.24 The t-test for the mean value of the total LCOF for the small-sized

problems for the Class II

126

5.25 The t-test for the mean value of total LCOF for the medium-sized

problems for the Class II

127

5.26 The t-test of the mean value of the total LCOF for the medium-

sized problems for the Class II

128

5.27 The overall means of approximation ratio for the small-sized

problems for the Class II

132

xiv

5.28 The overall means of approximation ratio for the medium-sized

problems for the Class II

133

5.29 The overall means of approximation ratio for the large-sized

problems for the Class II.

137

5.30a The Optimal Count test for the Class II 139

5.30b The t-test for the Optimal Count test for the Class II 141

5.31 The consistency test for the Class II 143

5.32 The mean of normalized total LCOF for the real life problem 146

5.33 Average gain or loss by adopting the HeuA policy 148

5.34 Average gain or loss by adopting the HeuB policy 149

5.35 Average gain or loss by adopting the GAlg policy 150

5.36 Average gain or loss by adopting the HeuIII policy 151

5.37 Average gain or loss by adopting the HeuIV policy 152

5.38 Percentage gain or loss by adopting the HeuA policy 154

5.39 Percentage gain or loss by adopting the HeuB policy 155

5.40 Percentage gain or loss by adopting the GAlg policy 156

5.41 Percentage gain or loss by adopting the HeuIII policy 157

5.42 Percentage gain or loss by adopting the HeuIV policy 158

5.43 Mean of the total execution time by solution methods and problem

sizes for the Class II

160

5.44 The t-test for execution time for the small-sized problems for the

Class II

162

5.45 The t-test for execution time for medium-sized problems for the

Class II

163

5.46 The t-test for execution time for the large-sized problems for the

Class II

164

xv

5.47 The overall means of approximation ratio for the small-sized

problems for the Class I

170

5.48 The overall means of approximation ratio for the medium-sized

problems for the Class II

171

5.49 The overall means of approximation ratio for the large-sized

problems for the Class II

172

5.50 Mean of normalized total LCOF by solution methods and problem

sizes for the Class III

174

5.51 t-test for the mean value of the total LCOF for small-sized

problems for the Class III

176

5.52 The t-test for the mean value of the total LCOF for medium-sized

problems for the Class III

177

5.53 The t-test for the mean value of the total LCOF for large-sized

problems for the Class III

178

5.54 The overall mean of approximation ratio for the small-sized

problems for the Class III

184

5.55 The overall mean of approximation ratio for the medium-sized

problems for the Class III

185

5.56 The overall mean of approximation ratio for the large-sized

problems for the Class III

186

5.57 The Optimal Count test for the Class III 187

5.57b The t-test for the optimal count result 188

5.58 The consistency test for the Class III 190

5.59 Mean of the total execution time by solution methods and problem

sizes for the Class III

192

5.60 The t-test for mean execution time for the small-sized problems for

the Class III

194

xvi

5.61 The t-test for mean execution time for the medium-sized problems

for the Class III

195

5.62 The t-test for mean execution time for the large-sized problems for

the Class III

196

5.63 The overall mean of approximation ratio for the small-sized

problem for the Class III

201

5.64 The overall mean of approximation ratio for the medium-sized

problems for the Class III

202

5.65 The overall mean of approximation ratio for the large-sized

problem sizes for the Class III

203

5.66 The mean of normalized total LCOF for the real life problem 205

5.67 Average gain or loss by adopting the HeuV policy 207

5.68 Average gain or loss by adopting the HeuVI policy 208

5.69 Average gain or loss by adopting the GAlg policy 209

5.70 Average gain or loss by adopting the DMDD policy 210

5.71 Percentage average gain or loss by adopting the HeuV policy 212

5.72 Percentage Average gain or loss by adopting the HeuVI policy 213

5.73 Percentage gain or loss by adopting the GAlg policy 214

5.74 Percentage average gain or loss by adopting the DMDD policy 215

A Hypothetical problem to illustrate the need for normalization 231

B The approximation ratio for the Class 1 for small sized Problems 247

C The approximation ratio for Class 1 for medium-sized problems 248

D The approximation ratio for Class 1 for large-sized problem. 249

E The approximation ratio of execution time for Class 1 problem

sizes 5 ≤ n ≤ 1000.

250

F The approximation ratio for Class II for small-sized problem 251

xvii

G The approximation ratio for Class II for medium-sized problems 252

H The approximation ratio for Class II for large-sized problems. 253

I The approximation ratio of execution time for Class 1I problem 254

J The approximation ratio for Class III for small-sized problems 255

K The approximation ratio Class III for medium-sized problems 256

L The approximation ratio for Class III for lage-sized problem 257

M The approximation ratio of execution time for Class III problem

sizes 5 ≤ n ≤ 1000.

258

LIST OF FIGURES

Figure Title of Figure Page

4.1 The slope of a straight line graph 55

xviii

4.2 The slope of a straight line graph with notional extreme

points.

57

4.3 Random generation code for the Class I and Class

III(PROBG)

70

4.4 Screen shot of a Random problem generation code for the

Class II(PROBR)

71

4.5a Single instance file of the HeuIV 73

4.5b Single instance file of the HeuIV 74

4.5c Single instance file of the HeuIV 75

4.6 The execution file of the HeuIV 76

4.7 The execution file of the HeuIV 77

5.1 Plots of approximation ratio of all the solution methods

for 5 ≤n ≤ 10

84

5.2 Plots of approximation ratio of all the solution methods

for 10 ≤n ≤ 25

85

5.3 Plots of approximation ratio of all the solution methods

for large-sized problems

90

5.4 Plots of approximation ratio of solution methods for 5 ≤n

≤ 10

115

5.5 Plots of approximation ratio of solution methods for 15 ≤n

≤ 25

116

5.6 Plots of approximation ratio of solution methods for 30 ≤n

≤ 1000

117

5.7 Plots of approximation ratio of solution methods for 5 ≤ n

≤ 10

130

5.8 Plots of approximation ratio of solution methods for 5 ≤ n

≤ 10

131

xix

5.9 Plots of approximation ratio by problem sizes 30 ≤ n ≤

1000

135

5.10 The plots of approximation ratio for the small-sized

problems

166

5.11 The plots of approximation ratio for the medium-sized

problems

167

5.12 The plots of approximation ratio for the large-sized

problems

168

5.13 Plots of approximation ratio for problem sizes 5 ≤n ≤ 10 180

5.14 Plots of approximation ratio for problem sizes 15 ≤n ≤ 25 181

5.15 Plots of approximation ratio for problem sizes 30 ≤n ≤

1000

182

5.16 Plots of approximation ratio for problem sizes 5 ≤n ≤ 10 198

5.17 Plots of approximation ratio for problem sizes 15 ≤n ≤ 25 199

5.18 Plots of approximation ratio for problem sizes 30 ≤n ≤

1000

200

A The Gantt chart of the SPT schedule 233

LIST OF ABBREVIATIONS AND ACRONYMS

Abbreviation Meaning

BB Branch and Bound

xx

EDD Earliest Due Date

SPT Shortest Processing Time

SPTTP Single Processor Total Tardiness Problems

MDD Modified Due Date

DMDD Dynamic Modified Due Date

MST Minimum Slack Time

ODD Operation Due Date

SCR Shortest Critical Ratio

LCOF Linear Composite Objective Function

GUI Graphical User Interface

NP Non-Polynomial

AR Approximation Ratio

OC Optimal Count

Acronyms

GAlg Generalized Algorithm

HeuA Heuristic A

HeuB Heuristic B

P Polynomial

MATLAB MATrix LABoratory

2TRD Total Tardiness of jobs with Release Dates

3TFZRD Total Tardiness and Total Flowtime of jobs with Zero

Release Dates

3TFRD Total tardiness and Total Flowtime of jobs with

Release Dates

TFZRD Total Flowtime of jobs with Zero Release Dates

xxi

TFRD Total Flowtime of jobs with Release Dates

2TZRD Total Tardiness of jobs with Zero Release Dates

HeuI Heuristic I

HeuII Heuristic II

HeuIII Heuristic III

HeuIV Heuristic IV

HeuV Heuristic V

HeuVI Heuristic VI

LIST OF NOTATIONS AND THEIR DEFINITIONS

Notations Definition

xxii

∈ Element of (set membership e.g A={3,9,14}, 3 ∈ A)

𝐷𝑗 Due time of job, J

𝑟𝑗 Release date of job, j

PJ Processing time of job, J

∑ 𝐶𝑗
𝑛

𝑗=1

Total Completion time

∑ 𝐸𝐽

𝑛

𝑗=1

Total earliness

∑ Lj

𝑛

𝑗=1

Total lateness

∑ Wj

𝑛

𝑗=1

Total waiting time

∑ FJ

𝑛

𝑗=1

Total flow time

N𝐸 Number of early jobs

N𝑡 Number of tardy jobs

𝐶𝑚𝑎𝑥 Makespan

𝐹𝑚𝑎𝑥 Maximum flowtime

𝛼0.05 Probability value at 95% significant level

∝, 𝛽 these are used as the relative weights associated with

the stated performance objective

1

CHAPTER ONE

INTRODUCTION

1.1 The Scheduling Problem

A scheduling problem involves the processing of job sets on processor(s) subject to

constraints to optimise performance measure(s). Examples of performance measures are

total tardiness, total flowtime, makespan, completion time, number of tardy jobs, among

others. The processing of a job on a processor is called an operation (French, 1982). The

goal is to determine a schedule that specifies the time a given job is to be executed

(Karger et al., 1999). Generally, the vital elements of scheduling are jobs, processors,

performance measures and constraints (Pinedo, 2008). Scheduling deals with the

sequencing and time tabling of jobs. Sequencing is the order in which a set of jobs are

to be processed on a number of processors. The determination of the start time and the

finish time of jobs is called the time tabling (French, 1982; Oyetunji and Oluleye, 2008).

Sequencing and time tabling are, therefore, regarded as the subsets of scheduling.

Scheduling is a short-term execution plan of a production planning model. Production

scheduling consists of the activities performed in manufacturing and servicing firms in

order to manage and control the execution of production processes. A schedule is an

assignment problem that describes in details (in terms of time unit) which activities to

be performed and how the resources should be utilized to satisfy the plan (Fera et al.,

2015).

1.2 Representation of Scheduling Problem

Scheduling problems can be represented by three parameters notation given by ∶ 𝛼|𝛽|𝛾

(Brucker, 2006).

where:

 α is the processor environments like single, multiple, parallel processors etc,

 β is the job characteristics or constraints like pre-emption, release dates, due dates etc,

𝛾 is the performance measures like flowtime, makespan, tardiness, among other.

2

1.2.1 Processor environment

The processor environment is characterized by a string of two parameters; 𝛼 = 𝛼1𝛼2

(Brucker, 2006). Possible values of 𝛼1 are ◦, P, Q, R, PMPM, QMPM, G, X, O, J, F.

If α1 ∈ {◦, P,Q, R, PMPM,QMPM}, where ◦ denotes the empty symbol (thus, α = α2 if

α1 = ◦), then each job, Ji consists of a single operation.

If α1 = ◦, each job must be processed on a specified dedicated machine.

If α1 ∈ {P, Q, R}, it is called parallel machine. In this environment, there are n jobs Ji

(𝑖 = 1,2,3, … , 𝑛) that have to be processed on m machines Mi, (𝑖 = 1,2,3, … , 𝑚) such

that each machines can process at most one job at a time and that each job can be

processed on one machine at a time. Parallel machine environment can be classifield

into identical parallel machine, uniform parallel machine and unrelated parallel machine.

a. Identical parallel machines (𝛼1= P): These are multiprocessors system in which

all the processors are identical, in the sense that they have the same computing

power. In other word, for the processing time 𝑃𝑖𝑗 of job Ji on machine Mj we

have 𝑝𝑖𝑗 = 𝑝𝑖 for all machines 𝑀𝐽. That is 𝑃𝑖1 = 𝑃𝑖2 = 𝑃𝑖3 = ⋯ = 𝑃𝑛𝑚.

b. Uniform parallel machines (𝛼1= Q) : A uniform parallel machine is a natural

generalization of identical machines in which the machines run at different

speeds but do so uniformly, that is they differ by some constant speed factors.

Thus, for each machine i there is a speed factor 𝑆𝑖, and 𝑝𝑖𝑗 = 𝑝𝑖/𝑆𝑖, where 𝑝𝑖 is

the inherent processing requirement of job j.

c. Unrelated Parallel machines(𝛼1= R): In unrelated parallel machines, the

processing time of jobs j1 varies between the machines in a completely arbitrary

fashion. The processing time of each job on any of the machines is different and

bears no relation with each other. Though there is no relationship between

machines speed in an unrelated parallel machine, there may exist hierarchy

between the machines. Thus, the machines can be ranked from the highest to the

lowest speed.

If α1 = PMPM and α1 = QMPM, it is called multi-purpose machines with identical and

uniform speeds, respectively. In a multi-purpose parallel machine scheduling problem,

a job can be processed by any machine of an associated, pre specified subset of the

3

machine set. Thus, these problems generalize classical parallel machine problems in

which a job can be processed by each machine of the machine set.

 If α1 ∈ {G,X,O, J, F}, it is called a multi-operation model, i.e. associated with each job

Ji, there is a set of operations Oi1, . . .,Oi,ni. The machines are dedicated, i.e. all μij are

one element sets. Furthermore, there are precedence relations between arbitrary

operations. This model is called a general shop. The general shop is indicated by setting

α1 = G. A scheduling problem is said to be a general job shop, if there are no restrictions

upon the form of technological constraint and each job has its own processing order and

bears no restriction on the processing order of any other jobs (French, 1982, Al-harkan

2008). For a general job shop problem, the number of possible sequences are (𝑛!)𝑚,

where n is the number of jobs and m is the number of machines.

Job shops (α1 = J), flow shops (α1 = F), open shops (α1 = O), and mixed shops (α1 = X)

are special cases of the general shop. The job shop scheduling problem consists of n

jobs, which require processing on at least m different machines. Each job has its own

process sequence. Furthermore, the process sequences of the jobs are different from one

another. The open shop scheduling problem consists of n jobs which are to be scheduled

on m different machines. There is no process sequence for each job, which means that

the operations of that job can be performed in any order.

The flowshop scheduling problem is one with several machines available in the shop.

The characteristic of this type of shop is that the jobs processed in it use machines in the

same order: they all have the same processing routing. There are n machines and m jobs.

Each job contains exactly n operations. The ith operation of a job must be executed on

the ith machine. No machine can perform more than one operation simultaneously. For

each operation of each job, execution time is specified. Operations within one job must

be performed in the specified order. The first operation gets executed on the first

machine, then (as the first operation is finished) the second operation on the second

machine, and so until the n-th operation.

Furthermore, α2 can either be a positive integer or 0. If α2 is a positive integer (1,

2,….m), it denotes the number of machines. If α2 = k, then k is an arbitrary, but fixed

number of machines. If the number of machines is arbitrary, set α2 = ◦.

4

1.2.2 Job environment

The job characteristics are specified by a set of parameters (𝛽), which contain at most

six elements; 𝛽1, 𝛽2 , 𝛽3, 𝛽4, 𝛽5, 𝑎𝑛𝑑 𝛽6 (Brucker, 2006).

𝛽1 describes the job pre-emption. Pre-emption of a job or an operation means that the

processing of a specific task of job may be interrupted and resumed or repeated at a later

time, even on another processor. A job or an operation may be interrupted several times.

If pre-emption is allowed, set 𝛽1 = preemption, otherwise 𝛽1 does not appear. 𝛽2

describes the precedence relations between jobs. Precedence constraints between jobs

implies that a given job must be processed before another specified job. If there is no

precedence constraint, 𝛽2 does not appear. 𝛽3 describes the release date (𝑟𝑖) for each job.

The release date of a job is the time the job is available in the shop. It is a variable and

varies from zero to any operation time. The dynamic shop is one where jobs arrive

intermittently (𝑟1≠0), while the static shop is one where all the jobs are available at the

same time (𝑟1=0) for processing. For a static shop, 𝛽3 does not appear. 𝛽4 specifies the

restrictions on the processing time or on the number of operations. The processing time

of a job is the time the job spends on the processor(s). 𝛽5 specifies the due date (𝑑𝑖) for

each job. The due date of a job is the date the job is expected to be completed. 𝛽6

specifies a batch or partition problem. There are two types of partition problems; the

parallel batching (P-batch) problems and the serial batching (S-batch) problems (Ghosh

and Nagi, 2007).

For the P-batch problems, all the jobs of a batch are processed in parallel and the length

of the batch is equal to the maximum of the processing times of all the jobs in the batch

plus the set up time. For the S-batch problems, all the jobs of a batch are processed

sequentially and the length of a batch is equal to the sum of the processing times of all

jobs in the batch plus the set up time. 𝛽6 indicates either the P-batch or the S-batch

problem. If there are no batches, 𝛽6 does not appear.

1.2.3 Performance measures

Performance measures are criteria by which the performance of any solution method can

be assessed. Performance measures are also called performance objectives or scheduling

criteria. It is not easy to state the performance measure of a scheduling problem (French,

5

1982). This is because they are numerous, complex and often conflicting. However,

solving a scheduling problem involves finding a schedule that optimises a given

performance measure. French (1982), Al-harkan (2010), classified performance

objectives based on:

i. Completion time: Examples of criteria based on completion time are the total

completion time, average completion time, makespan.

ii. Effective resources utilization: These include the total flowtime, maximum

flowtime, average flow time, among others

iii. Due date: The main criteria in this category are the total earliness, total

tardiness, maximum lateness, total lateness, average lateness, among others.

Performance objectives are formulated by mathematical expressions. French (1982),

Oyetunji (2009) and Al-harkan (2010) stated some mathematical expressions used to

compute scheduling objectives. Some of the criteria are described as follows:

i. The Makespan (𝐶𝑚𝑎𝑥): This is the completion time of the last job in a

schedule or the maximum completion time. A common scheduling problem

is to minimise the makespan. The criterion is used to measure the level of

utilization of the processor. The maximum completion time is given by:

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝐶1, 𝐶2 , 𝐶3 … , 𝐶𝑛)

ii. The total flowtime (𝐹𝑡𝑜𝑡): The flowtime is the difference between the

completion time and the release date. Total flowtime is the sum of the

flowtime of all the jobs. Scheduling criteria based on the total flowtime is

given by :

(𝐹𝑡𝑜𝑡) = ∑ Fi
𝑛
𝑖=1 = ∑ (Ci

𝑛

𝑖=1
𝑟𝑖) = 𝐹1 + 𝐹2 + 𝐹3 + ⋯ + 𝐹𝑛

A common problem is to minimise the total flowtime. This is because

flowtime is proportional to the resources utilization.

iii. The Total Tardiness: A job is said to be late or tardy, if it is completed after

its due date. Tardiness is similar to lateness except that it carries only positive

values. Whenever a job completes before its due dates, its lateness is negative

and its tardiness is zero.

Total tardiness (𝑇𝑡𝑜𝑡) is given by: 𝑇𝑡𝑜𝑡: ∑ 𝑇𝑖
𝑛
𝑖=1 = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)} 𝑛

𝑖=1

A common problem is to minimise the total tardiness.

6

iv. The Total Earliness: The earliness is also a due date related performance

measure but reflects early delivery of jobs. Total earliness is defined as the

summation of earliness of individual jobs.

Total earliness (Etot) = ∑ Ei
𝑛
𝑖=1 = ∑ (di

𝑛

𝑖=1
Ci)

A common scheduling problem is to find a schedule that maximises the total

earliness. Earliness is the opposite of lateness; hence, whenever lateness is

negative, earliness is positive and vice versa.

1.3 Classification of Scheduling Problems

Scheduling problems are usually represented by three parameters; the processors, the

performance objectives and the constraints. Thus, scheduling problems are classified

based on the:

i. Number of processors,

ii. Number of performance objectives involved, and

iii. Constraints involved.

1.3.1 Scheduling problems based on the number of processors

Based on the number of processors, scheduling problems can be classified into single

processor and multi-processors problems. A single processor scheduling problem is one

in which there is only one processor for all the jobs. Some common examples are:

i. Aircraft queuing up to land in airport with only one runway: This is an n job,

one processor problem. Assuming the number of aircraft arriving in a day is

known, the aircraft are the jobs and the runway is the processor.

ii. Vehicles queuing for spraying and drying in a booth or baker.

iii. An auto repair shop with one working pit lift.

iv. The processing of jobs through a small non-time-sharing computer.

v. A paint manufacturing plant in which the whole plant is devoted to make a

colour of paint at a time.

vi. Patients waiting to see a single specialist doctor.

vii. A unit means of transportation of a logistic or a shipping firm

A multi-processors scheduling problem is one in which there are several processors

available upon which jobs may be executed. Some common examples are

7

i. An hospital with many doctors in the same area of specialization that can

attend to patients

ii. A bank with many front desk officers or cashiers performing the same duties.

iii. A petrol station with many attendants selling to customers on queue.

A single processor scheduling problems can also exist in a multi-processors system,

where bottleneck occurs. A bottleneck is a point of congestion in a system that occurs

when the jobs inflow at a point exceed the jobs outflow at that point. A bottleneck creates

queue and elongates the overall cycle time. Bottleneck exists in various systems from

computer networking to factory assembly lines. For an example, the shipping

department of a company may constitute a bottleneck, if the purchasing orders exceeded

the distribution rate to the customer. The painting section of an auto repair firm may also

constitute a bottleneck, if the total work inflow (output from other subsections like

mechanical, electrical and body section) transferred to the painting section is high,

compared to the work outflow at the section.

1.3.2 Scheduling problems based on the number of performance objectives

Based on the number of performance objectives involved, scheduling problems can be

classified into:

i. Single criterion scheduling problems: These are problems in which only one

performance objective is to be optimised.

ii. Multi-criteria scheduling problems: These are problems in which two or

more performance objectives are to be optimised. The simplest form of multi-

criteria scheduling problems is called the bi-criteria problem (M’Hallah,

2007). Bi-criteria problems are those in which only two performance

objectives are to be optimised.

1.3.3 Scheduling problems based on the applied constraint

Two types of constraints are commonly found in scheduling problems: the processor

capacity constraints and the technological constraints (Baker and Trietsch, 2013).

Processor capacity constraints deal with the number and the arrangement of processors.

Single processor, multiple processors, uniform parallel processors, identical parallel

processors, unrelated parallel processors, among others, are common examples of

8

processor capacity constraints. Technological constraints deal with the restriction on the

sequencing of the jobs (Al-harkan, 2010). Examples include the static system, dynamic

system, deterministic system, stochastic system, precedence constraints, among others.

The static system is one in which the set of jobs available for scheduling does not change

over time. This implies that all the jobs have equal or effectively zero release dates. In

contrast to static systems, scheduling problems in which new jobs appear over time is

called the dynamic system. This implies that the jobs have non-zero release dates.

Scheduling of jobs on single processor in manufacturing systems is complex, especially

when the order of jobs arrival is dynamic (Kaplanoglu, 2014).

Static models have been studied more extensively than dynamic models because they

require less computational time, though dynamic models offer a wider application.

However, static models often capture the essence of dynamic systems, and the analysis

of a static problem uncovers valuable insights and sound heuristic principles that are

useful in solving the corresponding dynamic situation (Baker and Trietsch, 2013).

Furthermore, when the conditions of a scheduling problem are known with certainty, the

model is called deterministic while a problem with an explicit probability distribution is

called stochastic (Pinedo, 2008).

1.4 Effectiveness and Efficiency

The effectiveness and efficiency are the two parameters considered in selecting solution

methods for a scheduling problem. The effectiveness of an algorithm is a measure of

closeness of the value of the objective function of the algorithm to the optimal or existing

standard. The efficiency is a measure of computation or execution time required by the

algorithm to solve an instance of problem. Based on the effectiveness and efficiency of

an algorithms; solution methods can be classified into:

i. Exact Algorithm: These are solution methods that yield optimal result in terms

of effectiveness and require a polynomial-time bound computation time

(efficient). The limitation of these methods is that they are applied to a specific

problem. Example include the Shortest Processing Time (SPT) rule for solving

the scheduling problem of minimizing total flowtime with zero release dates.

ii. Enumeration solution methods: These are solution methods that yield optimal

solution in terms of effectiveness but require prohibitive execution time,

9

especially for large-sized problems. These include the complete enumeration

and implicit enumeration methods (the Dynamic programing method, the

branch and bound). The methods can be applied to different classes of

optimization problem but with very limited problem sizes due to time

complexity.

iii. Approximation solution methods: These are solution methods that yield

approximate solutions in terms of effectiveness within a small computation

time. These methods can be explored to solve all classes of optimization

problems. Examples are heuristics and metaheuristics. In selecting an

approximation solution methods to be explored for a given NP-hard problem

among a set of polynomial time bound algorithms, effectiveness is given higher

priority than efficiency. For an instance, in a minimization problem, if the

value of the mean objective function and execution time of the two polynomial

bound algorithms AA and DD were found to be AA(14, 0.004minutes) and

DD(12, 0.04minutes), then the DD method would be selected in preference to

the AA method. Though, the AA is 10 times faster than the DD to achieve the

result while the DD is 1.2 times more effective than the AA.

1.5 Importance of Tardiness and Tardiness Related Objectives

Effective scheduling of jobs to optimise the required performance measure(s) is very

important in manufacturing, production and servicing systems. This work presents

solution methods for minimizing a due date based performance measure (the total

tardiness) and an efficient resources utilization measure (the total flowtime). The static

and the dynamic release dates constraints are considered. The importance of minimizing

the tardiness related objectives to production and servicing firms include:

i. The present industrial environment is characterized by competition. Therefore,

customer satisfaction in terms of quality, cost and delivery time is a pre-requisite

for survival. A good quality control system will ensure that the product quality

conform to the established standard. The products cost and prompt service

delivery are partly influenced by the scheduling methodology that optimises both

the total tardiness and the total flowtime.

ii. In some manufacturing and production firms, penalty cost incurred on tardy jobs

increases with increase in total tardiness. Thus, to minimise the penalty cost, it

is necessary to minimise the total tardiness.

10

iii. Furthermore, minimizing the composite function of the total tardiness and total

flowtime implies that the organization attained performance development in

production cycle time, respect of expected delivery dates, inventory and work in

process management, adaptation and reactivity to variations in customer orders.

iv. In manufacturing, a schedule that minimises the flowtime either singly or as a

part of a composite function also minimises the production time and costs. This

is because such a schedule achieved optimum utilization of the production

facility, staff members, and equipment.

v. The total cost of a schedule is a complex combination of processing costs,

inventory costs, processor idle-time costs and tardiness penalty costs, amongst

others. Therefore, considering scheduling approaches with sum of total tardiness

and total flowtime is very relevant within the context of real life scheduling

problems.

vi. A schedule that minimises only the total flowtime will ensure proper inventory

management, reduction in production cost and profit maximization but offers no

solution to late delivery of goods and services. Thus the firm may incur some

tardiness penalty or loses its good will. On the other hand, scheduling approach

for minimizing only the total tardiness will ensure prompt delivery of goods and

services but with no consideration to breakeven and profit variables. Therefore,

combining the two criteria to form a bi-criteria problem will ensure the

aggregation of the benefits of each component.

1.6 Problem Statement

1.6.1 Broad consideration

Consider the operation of a firm (production or servicing firm) with only one processor

or with multi-processors but one processor constituting a bottleneck. Examples of the

formal include an auto repair firm with only one working lift, a working condition that

requires the use of programmed robot with only one robot, a vehicle spraying shop with

only one oven, among others. The shipping department of a firm which product is in

high demand will constitute a bottleneck, if it receives larger purchasing orders beyond

outflow capacity. A coupling machine of a ball point pen firm also constitutes a

bottleneck, if several batches of components of the pen from other departments are ready

simultaneously. The spraying section of an auto repair firm usually constitute a

bottleneck, if the work output from other sections (like mechanical, electrical, body

11

section) transferred to the spraying section is higher than the outflow of the section. A

bottleneck processor has the longest queue in a multi-processors system which

ultimately, results in failure to meet the delivery date and, therefore, has to be given

special attention.

A situation of job accumulation is inevitable in a bottleneck processor and in a single

processor system with inflow consistently exceeding the outflow. This could result in

tardiness penalty either in monetary terms or loss of value. Although, proper scheduling

has been identified as a solution to the problem, the combinatorial nature of job

sequencing makes the solution a complex one. For an instance, ten accumulated jobs can

be scheduled in 3, 628,800 different ways.

The accumulated jobs can be classified into two groups: the zero and the non-zero

release dates jobs. For both groups, the firm will be interested in completing all the jobs

with minimum deviation in the delivery dates. Also, for proper inventory management,

the firm will also plan that the jobs spend the minimum possible times in the shop. To

achieve this, a schedule that minimises the total tardiness and the total flowtime, either

singly or as a composite function, will be required.

1.6.2 Problem classes

A close examination of the problem statement reveals that the scheduling problem

considered here can be decomposed into six variants. These are the scheduling problems

of minimizing the:

i. Total Flowtime of jobs with Zero Release Dates (TFZRD),

ii. Total Flowtime of jobs with Release Dates (TFRD),

iii. Total Tardiness of Jobs with Zero Release Dates (2TZRD),

iv. Total Tardiness of jobs with Release Dates (2TRD),

v. Composite function of Total Tardiness and Total Flowtime with Release

Dates (3TFRD), and

vi. Composite function of Total Tardiness and Total Flowtime with Zero

Release Dates (3TFZRD).

12

Extensive literature review has shown that only the scheduling problem of minimizing

the TFZRD is a Class P scheduling problem, while others are NP-hard. The Shortest

Processing Time (SPT) algorithm (Smith, 1956; Bansal and Kulkarni, 2015) produced

optimal solution for the scheduling problem of minimizing the TFZRD. Also, the

Modified Due Date (MDD) (Baker and Bertrand, 1982; Naidu, 2002) and KSA I

algorithms (Oyetunji et al., 2012) yielded effective solutions for the scheduling

problems of minimizing the 2TZRD and TFRD respectively. However, problems (iv, v

and vi), which are tardiness related are open problems for which an improvement can be

made on the state of knowledge.

Given the problem description, the following single processor scheduling problems

parameters are required:

i. A set of n jobs : 𝐽1, 𝐽2, 𝐽3, … , 𝐽𝑛

ii. The processing time of each job; 𝑝𝑖

iii. The release or ready time of each job; 𝑟𝑖, and

iv. The due dates of each job; 𝑑𝑖.

1.7 Study Objectives

The primary objective of this study is to develop effective heuristics for solving the

single processor scheduling problem of minimizing the: total tardiness of jobs with

release dates (2TRD), total tardiness and total flowtime of jobs with zero release dates

(3TFZRD) and total tardiness and total flowtime of jobs with release dates (3TFRD).

The secondary objectives are:

i. To propose solution methods for 2TRD, 3TFZRD and 3TFRD and to

evaluate their effectiveness and efficiency relative to the selected existing

solution methods.

ii. To demonstrate the utility of the proposed solution methods.

1.8 Assumptions Made in the Study

In solving the problems outlined in sub-section 1.6.2, the following assumptions are

considered

i. Processors never break down and are available throughout the scheduling

period.

13

ii. The problem is deterministic

iii. Splitting of jobs, job cancellation and job pre-emption are not allowed; and

iv. Only one job can be processed at a time. (This is the processor capacity).

1.9 Justification for the Study

The importance of the two performance measures were discussed in section (1.4).

Furthermore, the selection of the single processor environment is not only because of its

wide industrial application, but also, due to the fact that the multiple processors

environment can be partitioned into single processor units. Baker and Trietsch (2009)

discussed the concept of fundamental partition of multiple processors into single

processor units.

Furthermore, a single processor can also constitute a bottleneck in a chain of processes

or processors, such that the output of the production line is limited by the throughput of

the bottleneck processor (Michael et al., 2015). Almost every system has a bottleneck.

If a system was running at full capacity, at least one processor would be accumulating

jobs. A bottleneck processor restricts the entire production processes (Yang et al., 2006).

Therefore, identifying the bottleneck processor and scheduling the jobs effectively on it

will enhance the output for the whole system (Bao et al., 2012). Identifying bottleneck

is critical for improving efficiency in a production line because it identifies the area

where accumulation occurs. The processor that accumulates the longest queue is usually

the bottleneck. Therefore, identifying the bottleneck and applying a proper scheduling

policy on the processor will minimise stalls in production, supply overstock, pressure

from customers and low employee morale.

1.10 Outline of the Succeeding Chapters

This thesis is set out in six chapters. Chapter two examines the literature related to this

research, including an assessment of the existing models or solution techniques for the

subject matter. The basic methodology employed for this research work, the simulated

problems generated, the real life problems explored as well as the various comparative

analyses carried out on the heuristics proposed are discussed in chapter three. Models’

development as well as the implementation of the models for all the problem classes are

discussed in chapter four.

14

The performance of the models in terms of the effectiveness and efficiency, the results

of the comparative analyses as well as the utility of the models to real life problems are

enumerated and discussed in chapter five. Conclusions based on the results obtained for

each problem class, contribution of the work to knowledge, industrial practice and policy

as well as recommendations for future research are also discussed in chapter six

15

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

It is necessary to provide background information and previous research that is relevant

to the subject area in this study. This would assist in identifying the knowledge gaps that

demand further investigation by critiquing the existing findings. It will also aid in

comparing previous findings. In view of this, this chapter presents a comprehensive

review of literature on the different classes of scheduling problems. Section 2.1

highlights the historical background of production scheduling in manufacturing. The

state of knowledge on the subject matter is discussed in sections 2.2 - 2.6.

2.2 Historical Background of Production Scheduling

Production and servicing managers have changed over the years from capitalists who

developed innovative technologies to custodians who struggle to control complex

systems to optimise multiple objectives (Skinner, 1985). Production scheduling started

in a simple way by determining when work on an order should commence and when the

order should be due (Jeffrey, 2008). They did not provide any information about the time

required for individual operations or jobs. This type of schedule was widely used before

formal methods became available. The history of formal production scheduling started

from the first chart developed by Henry Gantt (1916) to advance scheduling systems that

now rely on algorithms.

Gantt explicitly discussed scheduling, especially in the job shop environment. Moreover,

he discussed the need to coordinate and schedule activities to avoid “interferences”. In

1916, Gantt designed chart used by foremen and supervisors to know whether

production was on schedule, ahead of schedule, or behind the schedule.

Gantt chart is used to measure activities by the amount of time needed to complete them.

According to Cox et al. (1992), ‘Gantt chart is the earliest and best known type of control

16

chart designed to show graphically the relationship between the planned performance

and the actual performance’. Though, Gantt chart remains one of the most common tools

for planning, controlling and monitoring production, other tools including planning

board, loading and line of balance have been developed over the years. However, with

the advancement in technology, computer based production scheduling emerged.

Among the many benefits of information technology is the ability to execute complex

algorithms automatically. The development of better algorithms for creating schedules

is thus an important part of the history of production scheduling.

Linear programming was developed in the 1940s and applied to production planning and

scheduling problems. George Dantzig (1947) invented the simplex method, a general

but powerful technique for solving linear programming problems. In the 1950s, research

into sequencing problems motivated by production scheduling problems led to the

development of useful algorithms like the Johnson's rule for the two-processor flow

shops, the Earliest Due Date (EDD) rule for minimizing maximum lateness, the Shortest

Processing Time (SPT) rule for minimizing average flowtime, Shortest Remaining

Processing Time (SRPT) rule to minimise the average completion time with release

dates (Phillips et al., 1998), Vladimír and Sudhakara (2010) solution method for flow

shop scheduling algorithm to minimise completion time for n-jobs m-machines problem,

among others.

Solving more difficult problems require a different approach (Roscoe, 1971). The BB

technique appeared around 1960. The algorithm implicitly enumerates all the possible

solutions and finds an optimal one. The advent of complexity theory in the 1970s

explained why some scheduling problems are ‘hard’. Algorithms that can find optimal

solutions to hard scheduling problems in reasonable time are unlikely to exist. However,

since decision makers need solutions in minimum possible time, the use of search

algorithms that can find good solutions have become inevitable. These algorithms are

called approximation algorithms or heuristics. Other innovations include genetic

algorithms, simulation annealing, ant colony optimization, and other evolutionary

computation techniques. Developments in artificial intelligence have led to agent based

techniques and rules based procedure that mimic the behavior of human organizations.

Scheduling research is continuous and some problems are generated based on the

existing situations.

17

2.3 Solution Methods to Scheduling Problems

There are various solution methods for solving scheduling problems. The choice of a

given method depends on the application of the problem, the decision maker or the end

user as well as the number of jobs involved (Karger et al., 1997). Akinyemi et al. (2002)

opined that no specific rules are better than others for all performance objectives.

Scheduling solution methods can be classified into the following:

2.3.1 Complete enumeration

In this method, all the possible sequences are analyzed to select the optimal. However,

scheduling problems are combinatorial in nature. For an instance, in a 𝑛 × 𝑚 problem

size, the number of possible schedules is given by : (𝑛!)𝑚.

where:

n is the number of jobs and

m is the number of processors.

Therefore, the number of possible sequences grow exponentially as the problem size

increases. Thus, the method is usually applying in solving scheduling problems with

limited problem sizes. This implies that the method is very effective but requires

prohibitively high execution time (Panneerselvam, 2007).

2.3.2 Implicit enumeration techniques

These methods list all the possible schedules and eliminate the non-optimal ones from

the list leaving those that are optimal (Pinedo, 2008). Common examples of implicit

enumeration techniques are the dynamic programming method and the Branch and

Bound (BB) method. Like the complete enumeration, the method is also very effective

but inefficient.

2.3.2.1 The Branch and Bound (BB) technique

The Branch and Bound (BB) is a general purpose strategy for solving many

combinatorial problems. The method consists of two fundamental procedures; the

branching and the bounding procedure. Branching is the process of partitioning a large

problem into two or more subproblems. Bounding is the process of calculating a lower

18

bound of the optimal solution of a given subproblem (Kager et al., 1999). The branching

procedure replaces an original problem by a set of new problems that are:

i. Mutually exclusive and collectively exhaustive subproblems of the original, and

ii. Partially solved versions of the original.

The bounding process provides a means for curtailing and reducing the number of nodes

to be exhausted so as to maximises the efficiency of the procedure. It involves

calculating a lower bound of the solution to each subproblem generated in the branching

process (Neda and Hamid, 2015). This can be done by:

i. Applying a suboptimal method with limited computational effort at the outset

of the procedure. For an instance, in a minimization problem, supposing that

a suboptimal method has an associated performance measure D. If one of the

subproblems in the branching process has an associated lower bound A > D.

Then there is no need to further analyze the subproblem in the search for an

optimum. This is because, no resulting solution can yield a better value than

D. When such a subproblem is found, its branch is said to be fathomed. By

not branching any further from the fathomed branches, the enumeration

process is reduced.

ii. Computing the contribution of the assigned subproblems to the total objective

and consider the node(s) with the lowest value. The nodes with the lowest

lower bound will be explored further. Ties are broken arbitrarily, in the first

instance.

Having branched the problem, the two common search procedures are the depth first

search and the frontier search (French, 1982). In the depth first search, the tree is

searched by exploring a branch and systematically working it down to take either of the

following decisions:

i. Eliminating the branch either before the final node or at the final node: This

decision is taken if the value of the objective function from the branch is

worse than the value obtained from the suboptimal method or the previous

explored branch.

ii. Exploring the objective function value at the final node of the branch as the

trial or the optimal solution. The former decision is valid, if the objective

19

function value obtained from the branch is better than the value from the

suboptimal method and there are more branches to be explored. The latter

decision hold, if the branch is the last one and yielded the best value of

objective function compared to other explored branches or the suboptimal

solution.

Furthermore, in the frontier search, we always branch from the node with the lowest

lower bound. In other words, we initially branch to all the number of possible

branches or nodes in the first level. The contribution of each of these nodes to the

total objective function is calculated. The node with the lowest value is explored

further to the next level. However, if more than one node has the same value, all the

nodes are advanced to the next level. Furthermore, at the next level, if the value of

the contribution of the objective function calculated from the explored node is

greater than the value obtain from any of the unexplored node in the previous level,

then the unexplored node in the initial level is also further analysed. The process

continues until the final schedule is obtained.

The depth-first search method requires a lesser storage but a greater deal of

computation compared to the frontier method. Thus, the latter method obtains the

optimal faster than the former method (French, 1982). The BB method guarantees

optimality in terms of effectiveness but easier to implement in problems with limited

number of jobs due to the computational requirements.

2.3.3 Heuristics method

The implicit and complete enumeration methods have one inevitable limitation; the

methods require prohibitively high computation time for large problem sizes. heuristic

methods avoid this drawback. They can obtain solutions to large problem sizes with

limited computational efforts. The limitation of heuristic methods is that, they do not

guarantee optimality (Brucker, 2007). However, the effectiveness of a given heuristic

can be measured through comparative analyses against the optimal solution for a feasible

limited number of jobs (Brucker, 2007). This is the basis on which the present work is

anchored

20

2.3.4 Metaheuristics method

Metaheuristic methods are efficient approaches for solving many optimization problems

(Ilhem et al., 2013). A metaheuristic is a procedure designed to provide a good solution

to an optimization problem with limited computation capacity (Bianchi, et al., 2009).

The methods sample a set of solutions which is too large to be completely enumerated

and may make few assumptions about the optimization problem being solved (Blum and

Roli, 2003). Like heuristics, metaheuristics do not guarantee optimality. Examples of

metaheuristics includes tabu search, simulated annealing, genetic algorithm among

others.

2.4 Complexity of Scheduling Problems

Complexity theory provides a mathematical framework by which computational

problems are studied (Sipser, 1997). The theory provides a means of measuring the

performance of algorithms with respect to computational time, T. The time complexity

of a solution method expresses the total number of operations such as additions,

multiplications and comparisons for each problem instance as a function of the size of

the instance (Weisstein, 2015). The input size of a typical scheduling problem is

bounded by the number of jobs n, the number of machines, m and the number of bits to

represent the largest problem parameter (the processing time, the due date, the release

date, etc.).

An algorithm is a step-by-step procedure for solving computational problems (Brian and

Daniel 2007). For a given input, it generates the correct output after a finite number of

steps. An algorithm is said to be polynomial, if its running time is bounded by a

polynomial input size. Polynomial algorithms are sometimes called efficient algorithms.

For scheduling problems, typical values of polynomial execution time includes O(n²)

and O(nm), where the big O-symbol stress that the numbers of elementary computations

of the algorithm grow at the same rate as the function Cn², where C is a constant.

The class of all polynomially solvable scheduling problems is called the Class P.

Examples of Class P scheduling problems are the scheduling problem of minimizing the

total flow time of jobs with zero release dates, the scheduling problem of minimizing

the number of tardy jobs with zero release dates, the scheduling problem of minimizing

21

the maximum tardiness of jobs with zero release dates, the scheduling problem of

minimizing the total flowtime of jobs with zero release dates, among others.

Another class of optimisation problems is known as the NP-hard problems. For such

problems, no polynomial time algorithms are known that yield optimal solutions. The

methods capable of producing optimal results for NP-hard scheduling problems are the

complete enumeration and the implicit enumeration. However, these methods require

prohibitive computation time especially for large problem sizes. Therefore, a NP-hard

scheduling problem with large number of jobs cannot be practically solved optimally.

Brucker (2007) stated that small sized NP-hard problems can be solved by BB method,

while larger sized problems required approximation algorithms or heuristics.

2.5 Approaches to NP-hard Scheduling Problems

The first step in solving a scheduling problem is to determine the problem complexity

status. This can be done by extensive literature review. Many scheduling problems are

known to be NP-hard. Therefore, it is unlikely to obtain optimal solution to those

problems efficiently, i.e. by polynomial time algorithms. An optimal solution can be

found for a NP-hard problem by various methods of reduced enumeration, either by a

BB algorithm or by formulating the problem as a mathematical programming problem.

In both cases, for problems of practical interest only small-sized problems can be

handled due to the time complexity involved. An exact solution to a job shop problem

with 10 jobs and 10 machines remained unknown for decades (Papadimitriou, 1994).

In order to find a “good” solution within an acceptable time for a NP-hard scheduling

problem with large problem sizes, approximation algorithms or the heuristics solution

methods can be developed. An algorithm is called an approximation algorithm, if it is

possible to establish analytically the closeness of the generated solution to the optimum

(either in the worst-case or on the average). The approximation ratio gives the relative

closeness of an approximation algorithm to the optimal.

The performance of a heuristic is usually analysed experimentally, through a number of

runs using either generated instances or known benchmark instances. Heuristics can be

very simple but effective. Therefore, a well-tailored heuristic, which performance has

22

been guaranteed experimentally for a given objective, is usually implemented in real life

problems.

Furthermore, when a solution method besides the complete enumeration and an implicit

enumeration technique yields an optimal solution for a Class P scheduling problem, the

term exact algorithm or simply say algorithm is used. Example is the Shortest Processing

Time (SPT) algorithm for solving the scheduling problem of minimizing the total flow

time of jobs with zero release date on a single machine. Early Due Date (EDD) algorithm

for minimizing the total lateness or maximum tardiness of jobs with zero release date on

a single machine.

2.6 Single Processor Total Tardiness Problems (SPTTP)

Scheduling a set of jobs which are to be processed on a single processor to minimise the

total tardiness is known as the Single Processor Total Tardiness Problems (SPTTP). Due

to the complexity of the SPTTP, Du and Leung (1990) proved that both the static and

the dynamic variants of the problems are NP-hard with a given set of independent jobs.

This implies that no heuristic has been found that yields optimal solutions. Thus,

complete and implicit enumeration techniques are usually employed for solving the

problems. However, computational time increases exponentially as the problem size

grows (Potts and Van Wassenhove, 1982). This limits the use of enumeration

techniques.

Nevertheless, Baker and Bertrand (1982) produced a near-optimal solution for the static

variant of the problem. The solution is called the Modified Due Date (MDD) rule. Bean

and Hall (1985) discusses extensively the accuracy of MDD rule. Extensive literature

review shows that different researchers have explored approximation algorithm or an

enumerative technique like the BB for solving the dynamic version of the problem. For

instance, Chu (1992) proposed a BB algorithm that can solve up to 25 jobs for the static

variant of the problem and up to 20 jobs for the dynamic variant. Baptiste et al., (2004)

presented a BB procedure with a time window constraint which represents the time

interval within which each job can be scheduled. Furthermore, Chu and Portmann

(1992) explored the dynamic version of the MDD rule to solve the problem. Naidu

(2003) also stated that the dynamic version of the MDD rule solves the problem

23

satisfactorily. Moreover, Baker and Triesch (2013) also listed authors who have

explored heuristics to solve the problem. This is shown in Table 2.1.

24

Table 2.1: Some existing heuristics that solve the SPTTP with release dates

Performance

Measure
Best Rule (s)

 Rules

Compared
Author

 Total

tardiness
SPT, ODD SCR Kanet and Hayya (1982)

 SPT, EDD MST, SCR Baker and Bertrand (1981)

MST, SPT,

EDD

OST, S/OPN,

ODD, SCR
Muhlemann et al.,(1982)

 SPT/CR COVERT
Anderson, and Nyirenda

(1990)

Source: Baker and Trietsch (2013): Principles of Sequencing and Scheduling

25

Baker and Trietsch (2013) stated that none of the heuristics produces the optimal or near

optimal solution. Thus, the problem remains open for further research. Therefore,

proposing new heuristics that can produce better results or solutions not significantly

different from the optimal even for small sized problems will fill this gap. In addition,

selecting among the existing heuristics based on performance for comparative analyses

against the intended proposed heuristics would also contribute to the state of knowledge.

This work will achieve this feat.

2.7 Multi-criteria Scheduling Problems

These are scheduling problems in which two or more performance objectives are to be

optimised. Multi-criteria scheduling problems are usually NP-hard (Rahimi, 2007).

Parviz (2009) stated that the larger the number of performance objectives in scheduling

problems, the higher the degree of computational complexity involved. When a

scheduling problem contains only two criteria, it is called a bi-criteria scheduling

problem (Ehrgott and Grandibleux, 2000). The total cost of a schedule is a complex

combination of processing cost, inventory cost, processor idle-time cost and lateness

penalty cost, amongst others (Oyetunji and Oluleye, 2009). A performance measure

usually represents only one component of the total costs of a schedule (French, 1982).

Considering scheduling problems with more than one criterion is very relevant within

the context of real life scheduling problems (Nagar, et al., 1995).

A necessary condition for multicriteria scheduling problems is the presence of more than

one criterion. The sufficient condition is that the criteria must be conflicting. Two or

more criteria are said to be conflicting, if the solution methods that produced optimal or

near optimal for one impair or does not necessarily yield optimal or near optimal for the

others. Two criteria are said to be “strictly”, if increase in satisfaction of one results in

decrease in satisfaction of the other. However, the sufficient condition does not

necessarily stipulate “strictly” conflicting criteria (Tapan, 2012).

2.7.1 Formulation of multi-criteria scheduling problems

Generally, scheduling problems can be formulated, using three parameters notation

given by: 𝛼|𝛽|𝛾 (Brucker, 2006).

where :

26

 α is the number of processor(s). α = 1 for single processor, α = 2 for two processors,

β is the job characteristics like pre-emption, release date, due date, among others, and

γ is the objective function.

Furthermore, Branke et al., (2008); Deb 2011 defined multi-objectives scheduling

problems as:

𝑀𝑖𝑛/𝑀𝑎𝑥 {𝑓1 (𝑥), 𝑓2 (𝑥), 𝑓3 (𝑥), … , 𝑓𝑚(𝑥)} (2.1)

subject to x ∈ 𝑆

where:

S is the set of feasible solutions,

x is the decision vector, x = (x1, x2, x3, . . . , xn),

fi is the performance objectives or criteria (i = 1,2, . . . , m), and

m is the number of performance criteria to be optimised.

2.8 Solution Methods to Multi-criteria Scheduling Problems

There are basically three approaches by which multi-criteria scheduling problems may

be solved. These are: the hierarchical, simultaneous, and pareto-optimal approaches.

2.8.1 Hierarchical or Lexicographic optimization

This is an approach in which one of the objectives is considered as the objective to be

optimised while others are considered as the constraints. This implies that the method

optimises one goal at a time starting with the highest priority goal and terminating with

the lowest, without degrading the quality of the higher priority goal (Taha, 2007; Ali,

2016).

T’kindt et al. (2001) proposed a BB algorithm and a heuristic for solving a-two processor

flow shop scheduling problem with the objective of minimizing the total flowtime,

subject to the constraint that the makespan is minimum. The problem was represented

as F||Lex(𝐶𝑚𝑎𝑥𝐹𝑡𝑜𝑡) where the notation Lex(𝐶𝑚𝑎𝑥𝐹𝑡𝑜𝑡) indicates that the makespan

(denoted by 𝐶𝑚𝑎𝑥) is minimised first and among all the schedules that minimise the

makespan, a schedule was found that minimises the total flowtime (denoted by 𝐹𝑡𝑜𝑡).

Results of computational tests showed that the proposed BB procedure was effective in

27

solving the problem for up to 25 jobs. For problems containing larger number of jobs,

the proposed heuristic, which was also used as the upper bound in the proposed BB, was

quite effective in finding a good schedule. Rajendran (1995) proposed a multi-criteria

scheduling problem in which the objective function is minimization of the weighted sum

of machine idle time, total flow time and makespan. T’kindt et al. (2002) proposed the

SACO algorithm for a-two processor flow shop scheduling problem with the objective

of minimizing the total completion time and the makespan. The latter was minimised

prior to the former. The problem was represented as: F2||Lex(𝐶𝑚𝑎𝑥,∑ 𝐶𝑖𝑗).

Computational experiments revealed that the SACO yielded better results compared to

existing heuristics. It was conjectured that for larger problems, SACO was the most

efficient.

Also, Hoogeveen (2005) solved a single processor hierarchical minimization problem in

which the dominant criterion was the total completion time and the recessive criterion

was the maximum lateness. The problem was represented as 1||Lex(∑ 𝐶𝑗 𝑗
, 𝐿𝑚𝑎𝑥). The

SPT algorithm was used to minimise the total completion time (∑ 𝐶𝑗 𝑗
). Maximum

lateness (𝐿𝑚𝑎𝑥) was minimised, using the EDD schedules that conformed to the SPT

sequence. Abdullah (2010) studied multicriteria scheduling problems to minimise total

tardiness subject to maximum earliness or tardiness. Furthermore, Haidar and Tariq

(2011) explored the EDD, SPT and MST heuristics to solve a single processor

scheduling problem of minimizing three hierarchical criteria; the maximum tardiness,

the maximum earliness and the sum of square of completion time. Ulungu et al, (1999)

proposed a tool called MOSA, for solving multicriteria problem.

However, the hierarchical approach has two major limitations; the approach solves

problems only in part and if no criterion is dominant, the method leads to a schedule that

is unbalanced.

2.8.2 Simultaneous optimization method

In this method, the criteria are aggregated into single objective function called the Linear

Composite Objective Function (LCOF). The expression for the LCOF, with respect to

criteria X, Y and Z, is given by:

28

F(X,Y) = 𝛼X + 𝛽Y + 𝛾𝑍 (2.2)

Thus, the LCOF consists of the sum of the relative weights of each objective multiplied

by the value of each of the objectives.

Mathematically, LCOF can be expressed as:

Optimise F(X) = a1X1 + a2X2 + a3X3 +, … , +amXm = ∑ akXk
m
k=1 (2.3)

 such that ∑ (ak) = 1m
k=1 0< ak < 1 , for all k = 1, 2, … , 𝑚 (2.4)

 where:

 𝑎1, 𝑎2, … , 𝑎𝑚 are the relative weights of criteria X1, X2, … , Xn to be optimised,

respectively.

F(X) is the Linear Composite Objective Function (LCOF), and

m is number of the criteria to be optimised.

Simultaneous optimization method has been explored for solving multi-criteria

scheduling problems. For instance, Tabucanon and Cenna (1991) suggested a method

for minimizing the mean flowtime and the maximum tardiness by assigning weights to

both criteria. They generated efficient schedules based on the Wassenhove and Gelders

(1980) algorithm and explored simulation approach to solve the problem. Furthermore,

Farhad and Vahid (2009) explored simultaneous optimization for multi-criteria problem

for minimizing the composite function of total machining costs (total completion time),

the earliness, the tardiness penalties and the total makespan. Oyetunji and Oluleye

(2010) proposed two heuristics (HR9 and HR10) for solving the bi-criteria scheduling

problem for minimizing the total completion time and the number of tardy jobs with

release dates on single processor. HR9 and HR10 were compared with the HR7 heuristic

proposed by Oyetunji (2010). Based on the experimental results, the HR7 heuristic was

recommended for the bi-criteria problem with number of jobs (n) less than 30 jobs while

the HR10 heuristic was recommended for the bi-criteria problems with a minimum

number of thirty jobs (n ≥ 30).

Erenay et al. (2010) considered the bi-criteria scheduling problems for minimizing the

number of tardy jobs and the average flowtime on single processor. They proposed four

heuristics, two of which were constructive algorithms and the others were metaheuristics

29

approaches. From the analysis, it was concluded that the proposed constructive

algorithms produced efficient schedules and performed better than the existing

heuristics. Oladokun et al. (2011) developed a bi-criteria algorithm for the simultaneous

optimization of the makespan (𝐶𝑚𝑎𝑥) and the number of tardy jobs (NT) on a single

processor with sequence dependent set-up time. An existing single criterion algorithm

called the Set Sequencing Algorithm (SSA), was adopted for solving the bi-criteria

problem. Graphical User Interface (GUI) based software of the algorithm was developed

and its performance was evaluated with real life problems. 150 problems, with sizes

ranging from 20 to 150 were randomly generated. The values of the Cmax and the NT of

the solution sequences were analysed. The output sequences gave an average reduction

of 32.1% in both measures compared with the input sequences. It was concluded that the

SSA was suitable for the bi-criteria problem.

However, there are two major setbacks associated with the simultaneous optimization

method. These are the problems of skewness (arising when the value of one criterion is

a multiple of the other) and dimensional conflict (arising when the two criteria have

different units). Both challenges were tackled through normalization proposition for

scheduling problems with release dates (Oyetunji and Oluleye, 2009; Akande et al

2015). However, to the best of this researcher’s knowledge, the normalization procedure

for the static environment in which the release dates is zero remained an open problem.

This work fills the gap.

2.8.3 Pareto-optimal solution approach

Pareto-optimal approach deals with the situation in which there is no information about

the associated weight or the attached importance of either of the criteria. In this

technique, a set of compromise solutions on both criteria are sought. These are called

the pareto-optimal solutions (Oyetunji, 2011). This approach involves finding a set of

all pareto-optimal schedules.

Hoogeveen (2005) stated that finding a set of pareto-optimal schedules is required in

order to obtain a solution to a bi-criteria scheduling problem in polynomial time. Once

the set of all pareto-optimal schedules has been obtained, the schedule that yields the

minimum value of the composite objective function gives the solution to the bi-criteria

30

problem. Fatih et al. (2009) proposed a pareto optimization approach for minimizing the

number of tardy jobs and the average flowtime on single processor.

One limitation of pareto-optimal approach is that it does not provides a final solution to

multi-criteria problems. It only provides a set of schedules (Oyetunji and Oluleye, 2009).

This requires the decision maker to select among the set of solutions, the best schedule

that optimises the required objective. Therefore, meaningful research is necessary to

support the decision maker for the post-pareto analysis phase.

Heidi and David (2006) proposed two methods to prune the size of pareto-optimal sets.

The first method is called the non-numerical ranking. The method provides the decision

maker a set of solutions that match his preferences and compares solutions with different

objective function combinations. The second approach is called the clustering method.

In this approach, the k-means algorithm was proposed to group the pareto-optimal set

into k different clusters with members of the same cluster similar to each other. The

solution that was closest to the centroid of each cluster was chosen to be the

representative solution in its respective cluster. Thus, the size of the pareto-optimal set

was reduced to k general solutions to be analyzed by the decision maker.

2.9 Bi-criteria Scheduling Problems

The advantages of implementing a bi-criteria scheduling approach over its single criteria

constituents are enormous. For an instance, exploring a schedule that minimises only the

total flowtime will ensure reduction in production cost and profit maximization but

offers no solution to late delivery of goods and services. Thus the firm’s may incur some

tardiness penalty or lose its good will. On the other hand, minimizing only the total

tardiness will ensure prompt delivery of goods and services but with no consideration to

breakeven and profit variables. Also, minimising total flowtime does not involve due

date, thus firms problem is addressed. In the case involving total tardiness, the client’s

problem has priority and is therefore the problem addressed. Therefore, combining the

two criteria to form a bi-criteria problem will better ensure the benefits accruing to both

parties.

Two variants of the bi-criteria scheduling problems for minimizing the total tardiness

and the total flowtime are consider in this study; the static (zero release dates) and the

31

dynamic (non-zero release dates) variants. For the static variant, the SPT algorithm

yields optimal solutions for the total flowtime while the MDD algorithm yields a near-

optimal solution for the total tardiness. However, not much work has been found for the

bi-criteria combination of the two objectives. This may be due to the fact that multi-

criteria scheduling problems are NP-hard, independent of the complexity status of the

corresponding single criterion problems (Della Croce et al., 2003). Nevertheless,

extensive literature review shows that only few solution methodologies (two heuristics)

were proposed for the problem. The heuristics were named the heuristicA and the

heuristicB. The authors of the work claimed the heuristics were the first proposed

solution method and thus are not compared with any other model (Sen and Dillepan,

1999). Furthermore, the authors did not normalize the two objectives. There is therefore,

no guarantee on the performance as well as the balance of the schedule obtained. In

addition, the authors applied the heuristics only to four job sizes; 6, 7, 8, and 9 jobs. In

this regard, there is a need to propose new heuristics for this problem and normalize the

heuristics to avoid skewness towards either of the criteria. In addition, normalizing the

heuristicA and heuristicB and comparing their performance to the intended proposed

heuristics will also contribute to the state of knowledge. Also, implementing BB for

small-sized problems and utilizing its results for benchmarking to measure the

performance of the aforementioned heuristics will be a great feat. This work attempted

to fill these gaps.

Furthermore, the introduction of non-zero release dates to a scheduling approach offers

wider application. Extensive literature review shows that no direct heuristic has been

found that solves the non-zero release dates variant of the problem. This is probably due

to the fact that each of the constituent objective function has been found to be NP hard.

Thus, the bi-criteria combination of the two criteria is strongly NP hard. However,

Oyetunji and Oluleye (2012) proposed a Generalized Algorithm (GAlg) for solving

multi-criteria scheduling problems using the individual objective. The algorithm is valid

for both the static and dynamic environments. Therefore, it was presumed that

implementing a GAlg for the problems and comparing the performance of the new

proposed heuristics as well as the other heuristics from the literature to the GAlg (for

both the static and dynamic variants) would also contribute to the state of knowledge on

the subject matter.

32

CHAPTER THREE

METHODOLOGY

3.1 Introduction

A research project contains a variety of dovetailing steps and procedure that are utilized

in achieving the underlined objectives. The steps are interconnected and the validity of

research findings depend on the acceptability of the methodology. In this regard, this

chapter presents the step-wise procedure as well as the methods employed in this

research work. In addition, the data analyses and the computer language to be utilized

for coding the various solution methods to be developed are also enumerated.

3.2 The Procedure

The first step of a research is the identification of open problems. Extensive literature

review has shown that significant contribution can be made to the state of knowledge

for single processor scheduling problems with tardiness related criteria, especially, when

considering its bicriteria variants with total flow time. Therefore, this work classified the

identified problems into three classes which are the scheduling problem for minimizing

the : Total Tardiness of jobs with Release Dates (2TRD), composite function of Total

Tardiness and Total Flowtime with Zero Release Dates (3TFZRD) and composite

function of the Total Tardiness and Total Flowtime of jobs with Release Dates (3TFRD).

The problems are named the Class I, Class II and Class III, respectively.

Furthermore, in solving a scheduling problem, it is necessary to determine the

complexity status of the problem in order to select a suitable solution method. It has also

been established through literature review that the identified problems are NP-hard.

Thus, due to the complexity of the NP-hard problems, heuristic solution method was

devised. However, in order to develop good heuristics for minimizing the stated criteria,

the functional relationships between job parameters and the performance measures was

also established. To achieve this, the problems were simplified and analysed with

33

equations. This also aided in further understanding of the problems which is the key to

models’ development to produce good results. Therefore, two heuristics based on the

iterative search method were developed for each problem class.

The heuristics proposed for the Class I problem were applied directly. The two criteria

that are involved in the Class II and Class III problems are expressed as a Linear

Composite Objective Function (LCOF). This is called the simultaneous optimization

approach. The approach was explored because it yields a final schedule without further

analysis unlike the pareto approach and also gives a balanced solution independent of

the relative weight of each of the constituent criteria compared to the hierarchical

method. In addition, a case of the LCOF in which the two criteria are equally important

(carry the same weight) was considered. This was to ensure a balance aggregation of the

benefits of the two measures. However, the heuristics proposed remained valid, if the

weight of either of the criteria changes. Although, the LCOF equation would need to be

altered to accommodate the change.

However, the problems of the skewness (arising when the values of one criterion is a

multiple of the other) and the dimensional conflict (arising when the two criteria have

different units) limit the use of the simultaneous optimization method. To avoid these

problems, normalization was required. For the Class III problem in which the dynamic

environment was considered, the existing normalization procedure found in the literature

was first explored. For the Class II, in which the static environment was considered, a

new normalization corollary was proposed. The heuristics proposed were then applied

to minimise the normalized LCOF.

The heuristics proposed were tested on randomly generated problems for performance

measure. To achieve this, some single processor scheduling problems were simulated.

MATLAB R2010 programing language was explored. The desktop tool module (editor)

was utilized. The choice of MATLAB over some other computer programming

languages, like C++, Fortran, VISUAL basic, etc. is based on the fact that it can be used

interactively. This means, if some commands are typed for executions at the MATLAB

command window, the results are given immediately. The parameters that were

generated are:

34

i. The number of jobs (n),

ii. The processing time (pi),

iii. The release date (ri), and

iv. The due date, (di).

Gursel et al. (2012) concept was adopted to generate these variables. The relations are

given as follows:

v. The processing time P follows the uniform distribution U(1,10). This implies

that Pi varies randomly from 1-10 inclusive.

vi. The release dates R follows the uniform distribution U(0, 40). This implies

that Ri varies randomly from 0-40 inclusive.

vii. The due dates Di is given by the equation; Di = Ri + kPi. (3.1)

where k is uniformly distributed between U(1,4).

The equations would be modified to suit the problem Class II, in which zero release

dates constraints is being considered.

Furthermore, the performance of a given solution method can be influenced by the

problem size. In other words, some solution methods perform better under smaller

number of jobs, while some perform under large number of jobs. Therefore, in

evaluating the performance of a solution method to scheduling problems, the method

must be tested with a wide range of problem sizes. To achieve this, eighteen different

problem sizes ranging from 5 to 1000 jobs and with fifty problem instances under each

problem size were generated and explored for each problem class. The adopted range of

problem sizes (5-1000 jobs) was to show that the heuristics proposed would be suitable

for the small scale, medium scale, large scale and global firms. For instance, a small

scale firm could be like small auto mechanic shops that can have up to 10 jobs waiting

for processing. Also, a medium scale firm can have up 25 jobs on their production line.

Furthermore, a very large and global firm (like Amazon shipping company, Maersk

shipping Group) can have up to 1000 jobs on the line. Also, it is an established fact that

a sample size (n) that is not less than 30 (n ≥ 30) is referred to as large sample size

(Oyawale, 2006). Using this fact, the considered problem sizes were classified into the

small-sized problems (5≤n≤ 10), medium-sized problems (15≤n≤ 25), and large-sized

problems (30≤n≤ 1000). The adopted fifty problem instances was to ensure that the

35

results obtained were not simply due to chance but a true reflection of the performance

of the solution methods.

Furthermore, the implementation of the proposed heuristics over a wide range of

simulated problem sizes succeeded the development of the heuristics and the simulation

of single processor scheduling problems. This requires a great deals of computation and

thus the use of computer programing language for coding is inevitable. For consistency

and to achieve integration of the procedure, the same programing language (MATLAB)

explored for the problem generation was also utilized. The coding of the heuristics and

the implementation of the generated problems were in four phases or files. These are;

i. The random problem generation file,

ii. The single instance file to solve a single instance of the problem,

iii. The execution file, where the fifty instances required for any size problem were

loaded and solved to obtained mean value of the objective function, and

iv. The run problem file where the saved random problems generated as well as

the execution file were loaded and run to obtain the required output.

The output of the coding includes the following:

i. The single processor scheduling problems parameters: These are the

processing time, the release dates as well as the due dates. They are the output

of the random problem generation file.

ii. The value of the objective function of a single instance problem and the mean

value of the objective function for the considered fifty instance: These are

the single instant effectiveness and the mean effectiveness of the solution

methods respectively. For the single criteria problem (2TRD), the

effectiveness is the total tardiness while for the two bicriteria problems, the

effectiveness is measure by the normalized Linear Composite Objective

Function (LCOF).

iii. The value of the execution time for each instant of the problem as well as the

mean value of the execution time for the fifty instances of the problem: These

are the single instant efficiency and the mean value of the efficiency

respectively.

iv. The final sequence of each of the problem instance.

36

Furthermore, some heuristics would be selected based on their performance from the

literature to solve the same problems implemented for the proposed heuristics. The

Branch and Bound (BB) procedure which gives an optimal result but requires a

prohibitively high execution time would also be implemented for benchmarking.

However, due to the prohibitive execution time, the BB method would only be applied

to problem sizes not exceeding twenty-five jobs. The output (the effectiveness and

efficiency) for all the implemented solution methods in each problem class would be

grouped into the small-sized (5 ≤ n ≤ 10), medium-sized ((15 ≤ n ≤ 25) and large-sized

(30≤ n ≤ 1000) problems for various comparative analyses. The standard deviation of

the effectiveness and the efficiency of each of the problems-sized (small, medium and

large sized) would also be computed.

3.3 Data Analysis

The relative effectiveness and efficiency of different solution methods were considered

in selecting the method to generate schedules in production or servicing systems.

Therefore, to demonstrate the utility of the heuristics proposed, the following analyses

were carried out.

3.3.1 The mean and standard deviation

The mean of the effectiveness (values of the objective function) as well as the efficiency

(the execution time) for the small, medium and large problem-sizes for the three problem

classes were computed. Furthermore, in order to measure the spread or the closeness of

the mean value to the value of the objective function in each of the individual number

of jobs, the standard deviations was also computed. It is expected that the standard

deviations would have large values (may even be greater than mean in some cases) for

Class 1 problem in which the total tardiness in the objective function. This is because,

the values of the objective function would be greatly spread out due to the combinatorial

nature of scheduling problems. In other words, the data are unlikely to cluster around

the mean. However, for Class II and III, where normalization were carried out, the value

of objective function is expected to lie between 0-1, the standard deviation is expected

to be small.

37

3.3.2 The approximation ratio (A.R)

The approximation ratio of an algorithm is the ratio of the value of the objective function

obtained from the algorithm to the benchmark value (𝑩𝑴𝒗𝒂𝒍𝒖𝒆). The benchmark value

can either be the optimal value from the BB method or the standard value obtained from

the most performed heuristic. For an example, the A.R of a given AA6 heuristic is

determined by:

A.R of AA6 =
𝑨𝑨𝟔 𝑽𝒂𝒍𝒖𝒆

𝑩𝑴𝒗𝒂𝒍𝒖𝒆
 (3.1)

A lower approximation ratio (A.R) value indicates better performance for a

minimization problem. This is because, the ratio measures the closeness of the heuristics

to the benchmark value. Thus, a lower A.R value indicates the heuristic is closer to the

𝑩𝑴𝒗𝒂𝒍𝒖𝒆 while a higher A.R value indicates the heuristic is far away from the 𝑩𝑴𝒗𝒂𝒍𝒖𝒆.

3.3.3 Test of mean (t-test)

The A.R test reveals that there is difference between two solution methods by

determining the ratio of performance of the two solution methods to each other.

However, the test fails to indicate the significance of the observed variation. T-test is

used to determine if the values of the objective function obtained for different solution

methods are statistically different. The common types of t-tests are; the one sample t-

test, an independent samples t-test and the dependent samples t-test.

The one sample t-test compares the mean of one group against a known, predetermined

or benchmark value. For an example, a cut point for a test score. An independent t-test

compares the means of two independent groups. For an example, comparing the

performance of two different algorithms on the same problem. A dependent t-test

compares two groups that are related or from the same source. For an instance,

comparing the results obtained from implementing the same algorithm on two different

problems.

In this work, an independent t-test was carried out because the performance of different

heuristics were too compared. However, four common types of independent t-tests

include;

38

i. Paired two samples for mean: The paired two samples for mean t-test is normally

used when you are testing twice on the same subject. For an example, testing

two scheduling solution methods on the same problem. The test shows whether

the results from the two solution methods are significant or not.

ii. Two samples assuming equal variance: This is used to test two groups to see if

there is statistical significance or if the results may have occurred by chance.

However, the test is applied, if there is an explicit information that the

population variance of the two groups are equal.

iii. Two samples assuming unequal variance. This test is used to determine whether

there is a difference between two groups within the population. For an example,

to test whether there is difference in two different solutions on a given problem.

iv. Another test for means is called the Z-test. This is used where normal

distribution is applied and is basically used when dealing with problems relating

to large samples not less than thirty (n ≥ 30).

However, the paired two samples for mean t-test was be adopted in this study. This is

because there was no information about the variance of the objective function for the

solution methods.

Furthermore, to explore t-test, the value of the probability (α) is required. This depends

on the confidence level and whether a one-tailed or a two-tailed test is used. The

confidence level describes the uncertainty of a sampling method. Often, researchers

choose 90%, 95%, or 99% confidence levels, but 95% level is commonly used and it

was adopted in this work. The 95% confidence level means that there is a 95% chance

that the calculated means contains the true population mean.

 A one-tailed test and a two-tailed test are alternative ways of computing the statistical

significance between two set of parameters. A two-tailed test is used to test the

significance of a claim of no differences between two set of parameters. In other words,

a two-tailed test will test if the mean of the objective value obtained from a heuristic AA

is significantly not different from that obtained from a heuristic BB (one direction). In

contrast, a one-tailed test is used if deviation in only one direction is considered possible.

This implies that a one- tail test will only test if the mean of the objective value obtained

from a heuristic AA is significantly greater than that obtained from a heuristic BB. At

39

the 95% level, for a one-tailed test, the α value is 5% = 0.05. Thus, it is written as 𝛼0.05

. For a two-tailed test, the α-value is 0.1 (0.05×2) (Oyawale, 2006). Thus, it is written as

𝛼0.01

The interpretation using the 𝛼0.05 for a one-tailed test in a minimization problem is stated

as follows:

i. If the 𝛼0.05 value is greater than 0.05 (p > 0.05), then the two solution

methods are not significantly different from each other.

ii. If the 𝛼0.05 value is less than 0.05 (p < 0.05), then the two solution methods

are significantly different from each other. The method with the lower

objective function is the superior method.

Similarly, for a two-tailed test in a minimization problem, the 𝛼0.05 -value can be

interpreted as follows:

iii. If the 𝛼0.05 value is greater than 0.1 (p > 0.1), then the two solution methods

are not significantly different from each other.

iv. If the 𝛼0.05 value is less 0.1 (p < 0.1), then the two solution methods are

significantly different from each other. The method with the lower objective

function is the superior method.

A confidence level of 95% and a probability value of 0.05 (one-tailed test) would be

adopted in this work.

3.3.4 The optimal count (OC) test

This test counts the number of times the heuristics achieve optimality. In other words,

the number of times the heuristics yield the same value of the objective function as the

BB method in the fifty instances for small problem sizes. While the A.R test measures

the differences between the optimal and the heuristics results, the t-test shows the

significance of the observed differences. However, the trends of performance of the

heuristics as the problem sizes increases as well as the number of times the heuristics

yield optimal in the fifty problem instances for small problem size are reveal by the

optimal count test.

40

3.3.5 Consistency test and the ranking of the solution methods

In order to assess the consistency of the proposed heuristics against other implemented

solution methods, the number of times each of the methods yields the best results in the

fifty problem instances were computed and expressed in percentages. All the solution

methods for each problem class was also ranked in the order of their effectiveness and

efficiency.

3.4 The Model Implementation for Real-Life Problems

To further demonstrate the utility of the proposed heuristics, the solution methods were

applied on real life data. The real life problems were obtained from the painting section

of the VAL-VAL Auto Clinic, Ibadan, Oyo State, Nigeria.

The painting section of the VAL-VAL Auto-clinic Engineering limited located at Ibadan

was visited. The unit carries out the following activities;

i. Spraying of vehicles,

ii. Drying and baking of vehicles, and

iii. Coordinating the rentage of the baker (oven).

The unit is equipped with a baking oven, where spraying is carried out. The oven serves

as the processor, while the vehicles are the jobs. The sprayed vehicle (job) is kept inside

the oven for certain period of time for proper drying. This is the processing time. The

oven can only house a car at a time. This is the processor capacity. Some auto repair

shops and automobile dealers also rent the baker for specified period of time. Therefore,

the job schedule on the baker includes the vehicle brought by customers to the VAL-

VAL Auto-Clinic Engineering limited and the vehicle brought by other firms intended

to rent the oven.

3.4.1 Data collection

Data were collected from the firm using the customer detail forms and by interviewing

the workshop manager. A customer details form of an automobile firm usually contain

information about the vehicle release date. The following pieces of information would

be gathered from the firm.

i. The release date: The date the job (vehicle) was brought to the firm or the date

any firm intended to rent the oven registered their intention was used as the

41

release date of the job. It were assumed that scheduling starts from the 1st day

of the Month. Thus, if a vehicle was received on the 6th of May 2015. The

release date is 6. Therefore, the release dates values would ranges from 1-31

inclusive depending on the month of the year.

ii. The processing time: The processing time of job is the time or day the vehicle

is expected to stay in the baker or the number of day(s) the firm that rents the

baker intends to spend.

iii. The due date: The date the firm gives to the customer that the job would be

completed is the due date. For instance, if a vehicle is brought to the firm on

30th of May, 2015, and the firm promises the customer to pick the vehicle on

3rd of June, 2014. Then, the release date is 30, and the due date is 34.

3.5 The MATrix LABoratory (MATLAB)

The MATLAB is a powerful computing system for handling calculations involving

scientific and engineering problems. The name MATLAB stands for MATrix

LABoratory, because the system was designed to make matrix computations easy.

However, the flexibility of MATLAB environment makes it easy to execute algorithms

development, system analyses, differential equations, mechanical system analyses and

electric circuits modelling.

One of the advantages of MATLAB over some other computer programming languages,

like C++, Fortran, VISUAL basic, etc. is that it can be used interactively. This means if

some commands are typed for executions at the MATLAB command window, the

results are given immediately. Therefore, this work will provide a standard code and

layout to generate any number of problem instances with unlimited number of jobs. The

general codes to execute the unlimited problem instances from any algorithm was also

provided.

42

CHAPTER FOUR

MODEL DEVELOPMENT

4.1 Introduction

The effectiveness and the efficiency must be taken into consideration while designing a

scheduling heuristic. Therefore, a scheduling heuristic may not necessarily involve

numerous computational steps once it achieves a level of acceptable accuracy. This is

measured through comparative analyses against the currently explored models.

Therefore, the key to developing a good heuristic for a given problem is the clear

understanding of the problem and not the numbers of the computational steps. Having

this in mind, heuristics are then developed for solving the problems considered in this

work. Therefore, this chapter discusses the development of heuristics for the Classes 1,

II and III problems. The need for normalization as well as the corollary utilized for the

normalization of the Classes II and III problems are also enumerated. Furthermore, for

all the problem classes, the solution methods selected from the literature for comparative

analyses are discussed.

4.2 The Scheduling Problem of Minimizing the 2TRD

The scheduling problem of minimizing the total tardiness on single processor with non-

zero release dates was explored as the Class 1 of this study. The analysis of the problem

as well as the proposed heuristics are now discussed:

4.2.1 Problem definition

Given a single processor scheduling problem, where a set of n jobs have to be sequenced

on a processor to minimise the total tardiness. Assuming that only one job can be

processed at a time and that the problem is deterministic. Thus, the release dates (𝑟𝑖), the

processing time (𝑝𝑖) and the due dates (𝑑𝑖) of every job (𝐽𝑖) are known with certainty.

The time the processing of a job, i starts on the processor, designated as 𝑆𝑖, possesses a

property defined by:

𝑆𝑖 ≥ 𝑟𝑖 (4.1)

43

The completion time (𝐶𝑖) of a job i is defined as:

Ci = Si + 𝑝i (4.2)

 where:

𝑆𝑖 = 𝐶𝑖−1 𝑜𝑟 𝑟𝑖

For i = 1

Si = 𝑟𝑖

Ci = pi + ri (4.3)

For job in position i +1 (job that succeeded the job in position i),

If Ci > 𝑟i+1

Ci+1 = Ci + 𝑝i+1 (4.4)

Si+1 = 𝐶𝑖 (4.5)

If Ci ≤ 𝑟i+1

Ci+1= ri+1 + Pi+1 (4.6)

 Si+1 = 𝑟𝑖

A job is said to be late or tardy if it is completed after its due date.

The tardiness is given by: 𝑇𝑖= 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)} (4.7)

The total tardiness is (𝑇𝑡𝑜𝑡): ∑ 𝑇𝑖
𝑛
𝑖=1 = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)} 𝑛

𝑖=1 (4.8)

4.2.2 Materials and methods

The methods adopted in this study involves proposing and implementing two new

heuristics to solve the problem. Two heuristics were also selected (based on their

performance) from the literature to solve the problem. In addition, the BB procedure was

also implemented for small and medium-sized problems. Comparative analyses was then

carried out on all the implemented solution methods.

44

4.2.3 Selected solution methods from the literature

Among the solution methods found in the literature, the following heuristics were

selected for implementation. The solution methods are now outlined;

i. The Minimum Slack Time (MST) Rule: The MST rule schedules jobs in the order

of increasing slack time. The slack time (𝑆𝑇) of a job j is given by:

 𝑆𝑇 = 𝑎𝑗(𝑡) − 𝑃𝑗 (4.9)

where:

𝑆𝑇 is the slack time,

𝑝𝑗 is the processing time of job j,

𝑎𝑗(𝑡) is the allowance of the job j.

The allowance (𝑎𝑗(𝑡)) of a job j is given by:

 𝑎𝑗(𝑡) = 𝑑𝑗– 𝑡 (4.10)

where:

𝑑𝑗 is the due date of job j, and

t is the sequencing time which can either be the completion time of the job at position

(j-1) or the release date of job j.

ii. The Modified Due Date (MDD) Rule: The MDD rule at any time schedules the

next job from the set of all unscheduled jobs ‘U’ with the smallest priority index

(i). The priority index is given by:

i = {𝑚𝑎𝑥{𝑡 + 𝑝𝑖, 𝑑𝑖}} (4.11)

where:

t is the starting time of the next unscheduled job i (i U) which can either

be the completion time of job in position i-1 or the release date of job i,

𝑝𝑖 is the processing time, and

𝑑𝑖 is the due date.

If there are only two jobs j and k to be scheduled at a time t, job j will precedes

job k if {𝑚𝑎𝑥{𝑡 +𝑝𝑗, 𝑑𝑗}} {𝑚𝑎𝑥{𝑡 + 𝑝𝑘, 𝑑𝑘}}.

45

However, the MDD rule does not consider two jobs at a time when there are more than

two unscheduled jobs. It considers all the available jobs, computes their priority indices

(i) and chooses the job with the least priority index.

iii. The Shortest Processing Time (SPT) Rule: The SPT rule schedules jobs in the

order of non-decreasing processing time.

iv. The Early Due Date (EDD) Rule: The EDD rule schedules jobs in the order

of non-decreasing due date.

4.2.4 Proposed solution methods

Two heuristics; named heuristicI (HeuI) and heuristicII (HeuII) are proposed for this

problem. The solution methods are now described.

i. HeuI

In order to minimise the total tardiness of jobs with non-zero release dates on a single

processor, three parameters are involved; the processing time, the release date and the

due date. In any schedule, the effects of the parameters are significant at the beginning,

while towards the tail end the effect of both the processing times and the due dates are

dominant. However, as the length of the schedule increases, the processing time is the

most dominant parameter. In this regard, the HeuI algorithm combines the EDD with

the SPT to obtain a schedule. The algorithm is as follows:

Initialization

JobSet A = [J1, J2, J3, . . . , Jn], set of given jobs

JobSet B = [0], set of scheduled jobs

JobSet C = [J1’, J2’, J3’, . . . , Jn’], set of unscheduled jobs, Jj’ = Jj

JobSet D = [J1’, J2’, J3’, . . . , Jn’], set of unscheduled jobs, Jj’ = Jj

JobSet E = [J1’, J2’, J3’, . . . ,Jn’], set of unscheduled jobs, Jj’ = Jj

JobSet U = [J1’, J2’, J3’, . . . ,Jn’], set of unscheduled jobs, Jj’ = Jj

46

The steps now follow;

STEP 1: Arrange JobSet A in the order of non-decreasing processing times and put

same in JobSet C. If there is a tie, break arbitrarily

STEP 2: Arrange JobSet A in the order of non-decreasing due date and put same in

JobSet D. If there is a tie, break arbitrarily

STEP 3: Compute the tardiness of each of the jobs in the JobSet C and the JobSet D

STEP 4: Combine the two schedules by scheduling the job in the same level and with

the lower tardiness. If there is a tie, break the tie with due date. The resultant schedule

is called JobSet E

STEP 5: Check if any job exists more than once in the JobSet E. If yes, remove the

repeated job from the back position. Compute the length of the resultant schedule. The

resultant schedule is called the JobSet U. Otherwise, JobSet E is renamed JobSet U

STEP 6: If the length of the JobSet U is equal to length of the JobSet A. Go to step 9.

Else, go to step 7

STEP 7: Subtract JobSet U from JobSet A to obtain the jobs that have not been

scheduled. The jobs constitute JobSet H

STEP 8: Arrange JobSet H at the back of JobSet U in the order of the due date

STEP 9: Compute the total tardiness of the JobSet U. If the total tardiness of JobSet U

is less than that of JobSet C, JobSet C is the JobSet B, otherwise JobSet U is the JobSet

B.

STEP 10: Compute the total tardiness of the required schedule (JobSet B).

STEP 11: Stop.

47

ii. HeuII

This is a modification of the HeuI. The two heuristics are based on the same principle.

However, the step 1 in the HeuI is replaced by arranging the JobSet A in the order of the

sum of the processing times and the release dates.

4.2.5 Application of the BB to solve the problem

The BB procedure implemented for this problem is described as follows:

The frontier search method was explored to branch, while the dynamic DMDD heuristic

was used to bound the branching tree. The problem p(0) was partitioned into n

subproblems, p(1), p(2), . . . , p(n), by assigning the first position in the sequence to each

of the nodes in the first level of the branching tree. Thus, the p(1) is the same problem,

but with job 1 fixed in the first position; the p(2) is similar, but with job 2 fixed in the

first position, and so on.

Let s denote a partial sequence of jobs from among the n jobs originally in the problem.

Also, let 𝑗𝑠 denote the partial sequence in which s is immediately preceded by job j.

Therefore, the completion time (Cj) of the sequence js is given by;

For j = 1

Cj = pj + rj (4.12)

For job in sequence j+1 i:e job s

𝐶𝑗+1 = {
𝐶𝑗 + 𝑝𝑗+1 , 𝐶𝑗 > 𝑟𝑗+1

𝑟𝑗+1 + 𝑝𝑗+1, 𝐶𝑗 ≤ 𝑟𝑗+1
 (4.13)

Let Q(s) represent some subproblems at level k in the branching tree, where k ≤ n. These

subproblems will be the original problems at that level with the different jobs assigned

at the first positions in each node at the level. Associated with Q(s) is a value, Vs, which

is the contribution of the assigned jobs in each level to the total tardiness. That is,

 𝑉𝑠 = ∑ 𝑇𝑗𝑗∈𝑠′ = ∑ (max{0, 𝐶𝑡(𝑗𝑠) − 𝑑𝑠})𝒔
𝒋=𝟏 (4.14)

48

This value of Vs is calculated for all the nodes in each level and compared to the lower

bound obtained from the DMDD heuristics (for the whole problem). As the level

progresses, the value of the lower bound obtained from each node increases. However,

at any level, k, any node whose value of Vs is greater than the heuristic value is discarded.

The process continues until all the jobs are scheduled.

The bounding process provides a means for curtailing and reducing the number of nodes

to be exhausted in order to improve the efficiency of the procedure. The bounding

procedure calculates a lower bound by applying the DMDD heuristic at the outset and

compares the value to the objective function obtained from all the branches in all the

nodes at each level.

4.3 Bi-criteria Scheduling Problems

The bi-criteria scheduling problem of minimizing the LCOF of total tardiness and total

flowtime on a single processor with zero release dates was explored as the Class II. The

non- zero release dates variant of the Class II was named as the Class III. The problems

analyse, the proposed normalization procedure as well as the proposed heuristics are

now discussed.

4.3.1 Problem definition

Given the following for a single processor scheduling problem:

i. A set of n jobs; J1 , J2 , …, Jn

ii. The processing time of each job, Pi, and

iii. The due date of each job, di .

The job tardiness 𝑇𝑖, is defined by;

 𝑇𝑖 = max {0 ,(𝐶𝑖 − 𝑑𝑖)} (4.15)

The total tardiness (Ttot) is thus defined as:

Ttot = ∑ 𝑇𝑖
𝑛
𝑖=1 = ∑ 𝑚𝑎𝑥 {0, (𝐶𝑖 − 𝑑𝑖)} 𝑛

𝑖=1 (4.16)

Similarly, the flowtime, 𝐹𝑖 of job is defined by:

𝐹𝑖 = 𝐶𝑖 − 𝑟𝑖 (4.17)

The total flowtime (Ftot) is given by:

49

Ftot = ∑ 𝐹𝑖
𝑛
𝑖=1 = ∑ (𝐶𝑖 − 𝑟𝑖) 𝑛

𝑖=1 (4.18)

For the Class II, the release dates of all the jobs is zero, thus

 Ftot: ∑ 𝐹𝑖
𝑛
𝑖=1 = ∑ 𝐶𝑖 = 𝐹𝑖 + 𝐹2 + 𝐹𝑖3+ . . . + 𝐹𝑛 𝑛

𝑖=1 (4.19)

Using the notations of Graham et al. (1979), the Class II problem is represented as:

 1 | | (∑ 𝑇𝑖
𝑛
𝑖=1 , ∑ 𝐹𝑖

𝑛
𝑖=1) (4.20)

Similarly, the Class III problem is represented as:

1 |𝒓𝒊| (∑ 𝑇𝑖
𝑛
𝑖=1 , ∑ 𝐹𝑖

𝑛
𝑖=1) (4.21)

Using the simultaneous approach, the LCOF is defined as:

LCOF = (𝛼 ∑ 𝑇𝑖
𝑛
𝑖=1 + 𝛽 ∑ 𝐹𝑖

𝑛
𝑖=1) (4.22)

where:

𝛼 is the relative weight of the total flowtime, and

𝛽 is the relative weight of the total tardiness.

Also, the sum of the relative weights of the two criteria is equal to 1.

 𝛼 + 𝛽 = 1 (4.23)

Therefore, the LCOF consists of the sum of the relative weights of each objective

multiplied by the value of the objectives (Akande et al., 2014).

A bi-criteria problem can only be solved, if the values of ∝ and 𝛽 are known (Oyetunji

and Oluleye, 2009). In this work, a case of the total tardiness criterion being as important

as the total flowtime criterion is considered.

Thus, 𝛼 = 𝛽 = 0.5

Therefore; LCOF = 0.5(∑ 𝑇𝑖
𝑛
𝑖=1 + ∑ 𝐹𝑖

𝑛
𝑖=1) (4.24)

However, the problems of skewness and dimensional conflict associated with the LCOF

are tackled through normalization proposition.

4.4 Normalization

A composite objective function will be biased or skewed towards one of the criteria if

the value of that criterion is a multiple of the other. Similarly, if there is dimensional

conflict, then the resultant composite function is said to be unbalanced. To obtain a

50

balanced and an unbiased composite function, normalization is required. Oyetunji and

Oluleye (2009) showed that the normalized value of any criterion in a multicriteria

problem can be expressed as:

 𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (4.25)

where:

𝑋𝑚𝑖𝑛 is the minimum possible value of the criterion X,

𝑋𝑚𝑎𝑥 is the maximum possible value of the criterion X,

X is the particular value of the criterion X obtained from a solution method, and

𝑋𝑁 is the normalized value of the criterion X.

Therefore, the problem is to determine the minimum and the maximum possible values

of each criterion. These values are called the extreme values.

4.4.1 The extreme values

 For a minimization problem, the minimum possible value of a scheduling criterion

represents the best value the criterion can attain, irrespective of the solution method

adopted. On the other hand, the maximum possible value of a scheduling criterion

represents the worst value the criterion can attain, irrespective of the solution method

adopted. These values are called the extreme values.

The two objectives (the total flowtime and the total tardiness) considered in this work

have the same unit, their values, especially at the beginning of a very good schedule

(where total tardiness is likely to be zero or very small), may not be in the same range.

Thus, the value of each of the objectives were normalised to the range of [0, 1], thereby

yielding dimensionless quantities/variables as in Cochran et al. (2003), (Oyetunji, 2011).

Oyetunji and Oluleye (2009) proposed some equations to determine the extreme values

of some objective functions with non-zero release date constraint. This is shown in Table

4.1.

51

 Table 4.1: The maximum and the minimum possible values of the objectives

Objectives Maximum Values Minimum Values

Ctot n(Rmax) + 𝑛𝑃1 + (𝑛 − 1) 𝑃𝑛−2 ±

. . . ∓1(𝑃𝑛) = n(Rmax) + 𝑛𝑃1 +

(𝑛 − 𝑖)𝑃(𝑛−𝑖−1) + 1(𝑃𝑛)

where i = 1 : n-2

𝑛𝑃1 + (𝑛 −

1)𝑃𝑛−2+. . . +1(𝑃𝑛) = 𝑛𝑃1 +

(𝑛 − 𝑖)𝑃(𝑛−𝑖+1) + 1(𝑃𝑛)

where i = 1 : n-2

Ftot n(Rmax) + 𝑛𝑃1 + (𝑛 − 1)𝑃𝑛−2 +

+1(𝑃𝑛) − n(Rmin) =

𝑛𝑃1 + (𝑛 − 𝑖)𝑃(𝑛−𝑖+1) +

1(𝑃𝑛) − n(Rmin)

𝑛𝑃1 + (𝑛 −

1)𝑃𝑛−2+ . . . +1(

𝑃𝑛)−n (Rmax)= 𝑛𝑃1 + (𝑛 −

𝑖)𝑃(𝑛−𝑖+1) + 1(𝑃𝑛) −

n(Rmax)

Ttot
∑ 𝑑𝑗

𝑛

𝑗=1

− (Ctot)𝑚𝑎𝑥
0

Source: Oyetunji and Oluleye (2009): Assessing solution methods to mixed multi

objectives scheduling problems.

52

However, the equations in Table 4.1 do not apply to a static system in which the release

dates of all the jobs is zero. To solve this problem, a new corollary was proposed.

4.4.2 The proposed corollary

This corollary is based on the fact that for single processor scheduling problems, optimal

or near-optimal solutions exist for some single criterion, scheduling problems with zero

release dates. For instance, the SPT algorithm yields an optimal solution for the total

flow time, total completion time, average flow time, among others. Also, the EDD and

Moore algorithms yield optimal solutions for the maximum tardiness and number of

tardy jobs, respectively.

The proposed corollary states that in order to determine the extreme values of a

scheduling criterion for which a known optimal schedule or solution exists, the

schedules corresponding to the two extreme values are notional.

PROOF: The validity of the corollary falls under two arguments;

i. Notional schedule is impossible and all the jobs corresponding to the extreme

points must be represented on the Gantt chart (argument against the corollary)

ii. A notional schedule is possible with only one job corresponding to the extreme

points represented on the Gantt chart (argument in favour of the corollary).

In order to validate the corollary, the two arguments were tested for a scheduling

problem of minimizing the total flowtime on a single processor with zero release dates.

The problem is solved optimally by the Shortest Processing Time (SPT) algorithm.

4.4.3 Argument against the corollary

The extreme values of the objective were determined using the argument against the

corollary as follows;

i. The minimum possible total flowtime

 The total flowtime is the sum of the flowtime. This is given as

∑ 𝐹𝑡
𝑛
𝑖=1 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 + . . . +𝐹𝑛 (4.26)

53

The flowtime is the sum of the waiting time (wi) and the processing time (pi). This is

given as;

𝐹𝑖= 𝑤𝑖 + 𝑝𝑖 (4.27)

The minimum possible value of the flowtime is the flowtime obtained when the waiting

time is zero. However, the waiting time can only be zero for job scheduled in the first

position. Furthermore, since only one job can be processed at a time, then it follows that

for jobs scheduled in position 2, 3, 4,….n. the waiting time will always be greater than

zero.

The minimum flowtime can thus be analyzed as follows;

For job scheduled in position 1, the minimum possible flowtime is given by

 𝐹𝑖= 𝑝1 (because, w = 0) (4.28)

For job scheduled in position 2, the minimum possible flowtime is given by

 𝐹𝑖= 𝑝1 + 𝑝2 (because, w = 𝑝1) (4.29)

For job scheduled in position 3, the minimum possible flowtime is given by;

 𝐹𝑖= (𝑝1 + 𝑝2) + 𝑝3 (4.30)

Therefore, for any job schedule in position, k, the waiting time is given by;

 𝑤𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1 (4.31)

𝑘 = 2,3, … , 𝑛

For k = 1, 𝑤𝑘 = 0

The minimum possible total flowtime,

𝐹𝑘 = 𝑝1 + {∑ 𝑝𝑖 + ∑ 𝑝𝑖
𝑛
𝑖=2

𝑘−1
𝑖=1 } (4.32)

For 𝑘 = 2,3, … , 𝑛.

Where 𝑝1 is the flowtime of the first scheduled job.

The minimum possible value of the total flowtime,

𝐹𝑘 = 𝑝1 + {∑ 𝑝𝑘 + ∑ 𝑝𝑖
𝑛
𝑖=2

𝑘−1
𝑖=1 } (4.33)

ii. The maximum possible total flowtime

The maximum possible value of the flowtime is achieved by maximizing the waiting

time. The maximum waiting time will depend on the position of the job in the schedule.

54

The waiting time for the job in the position k is given by;

𝑤𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1 For 𝑘 = 2,3, … , 𝑛 (4.34)

The waiting time is maximum, when the job is scheduled in the last position (k = n),

The maximum waiting time for the job in the last position, n, is given by;

𝑤𝑘 = ∑ 𝑝𝑖
𝑛−1
𝑖=1 (4.35)

The maximum waiting time for the job in the position k-1 is given by;

𝑤𝑘 = ∑ 𝑝𝑖
𝑘−2
𝑖=1 (4.36)

The maximum waiting time for the job in the position 1 is given by:

 𝑤𝑘 = 0 (4.37)

Thus, the flowtime for any such job i scheduled to positions 2, 3, . . . , n is given by:

𝐹𝑘 = 𝑤𝑘 + 𝑝𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1 + 𝑝𝑘 (4.38)

For k = 2, 3, 4, . . . , n

Therefore, the maximum possible value of the total flowtime is given as:

 𝑭𝒕𝒐𝒕 = 𝒑𝟏 + ∑ {∑ 𝒑𝒊 + 𝒑𝒌
𝒌−𝟏
𝒊=𝟏 }𝒏

𝒌=𝟐 (4.39)

4.4.4 Argument in favour of the corollary

To validate the corollary, the use of notional schedules must be justified. From

equation 4.22 discussed above, the normalized value of scheduling criteria is defined

as;

 𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (4.22)

The equation (4.22) is similar to equation of slope of a straight line AB shown by

Figure 4.1.

55

Figure 4.1: The slope of a straight line graph

Slope 1 =
𝑌2− 𝑌1

𝑋2−𝑋1

 X2 X1

Y2

Y1 A

B

56

However, consider some notional values that are not part of the data used to plot the

graph in Figure 4.1 and in such a way that can extend the minimum point (A) to point

(C) and the maximum point (B) to point (D) on the graph as shown in Figure 4.2. Then

by analysis, the slope of the graph remains unchanged, that is slope 1 = slope 2 (This

simply means the normalized value remain unchanged), though the minimum and the

maximum values on the graph change.

57

 Figure 4.2: The slope of a straight line graph with notional extreme points.

Y22

X2 X1

Y2

Y1 A

B

D

X22

Y11

X11

Slope 2 =
𝑌22− 𝑌11

𝑋22−𝑋11

C

58

Therefore, the extreme values of flowtime are now determined using the argument in

favour of the corollary as follows;

i. The minimum possible total flowtime

The total flowtime

∑ 𝐹𝑡
𝑛
𝑖=1 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 +. . . +𝐹𝑛 (4.40)

Similarly, the flowtime is the total time a job spends in the shop. When the release date

of a job is zero, the flowtime is the sum of the job waiting time (wi) and the processing

time (𝑝𝑖) of the job.

𝐹𝑖= 𝑤𝑖 + 𝑝𝑖 (4.41)

The waiting time of a job can only be zero, if the job is scheduled in the position 1.

Therefore, the minimum waiting time (besides the real waiting time from the SPT

schedule) is zero and it can only be obtained by assuming that all the jobs are scheduled

in position 1 (notional indeed since it is not real to schedule all the jobs in position 1

simultaneously). Also, the notional assumption is necessary since it is impossible to find

any real schedule better than the optimal (the minimum flowtime from the SPT).

Therefore, the minimum waiting time is zero. wmin = 0 (4.42)

Therefore, the minimum possible flowtime, 𝐹𝑚𝑖𝑛= 𝑃𝑖 (4.43)

The minimum possible total flowtime is given by: 𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝑝𝑖

𝑛
1 (4.44)

ii. The maximum possible total flowtime

For any job scheduled in position, k, the waiting time is given by;

𝑤𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1 𝑘 = 2,3, … , 𝑛 (4.45)

Therefore, the waiting time is maximum when k = n. Where k is the job position and n

is the number of job. Thus, the waiting time is maximum when job is scheduled in the

position k. The maximum waiting time of each of the job is given by:

 𝑤𝑚𝑎𝑥 = ∑ 𝑝𝑖
𝑛−1
𝑖=1 (4.46)

Therefore, for consistency purpose, a notional maximum waiting time is also obtained

by assuming that all the jobs are scheduled in the last position.

The maximum possible value of the flowtime of a job is given by;

 ∑ 𝑝𝑖
𝑛−1
𝑖=1 + 𝑝𝑖 (4.47)

59

The maximum possible total flowtime of all the jobs in the schedule is given by;

𝑛{∑ 𝑝𝑖
𝑛−1
𝑖=1 } + ∑ 𝑝𝑖

𝑛
𝑖=1 (4.48)

Equation (4.48) contains two components; the waiting time component and the process

time component.

The waiting time component = 𝑛{∑ 𝑝𝑖
𝑛−1
𝑖=1 } (4.49)

In the waiting time component, it was assumed that the maximum waiting time is equal

for all the jobs.

The processing time component = ∑ 𝑝𝑖
𝑛
𝑖=1 (4.50)

In the processing time component, though the maximum possible waiting time is

associated with each of the processing time, the processing time of each of the job

remains unchanged.

Furthermore, the following points were found to support the corollary:

i. For a minimization scheduling problem for which a known optimal solution exists,

there exists no real schedule that can yield a better result than the optimal solution.

For an instance, there is no real schedule (not notional) better than the SPT algorithm

schedule (optimal) for the scheduling problem of minimizing the total flow time of

jobs with zero release dates.

ii. If the argument (i) is valid, then any other minimum possible flow time can only be

a notional schedule. Thus, the corresponding maximum possible flow time must also

be a notional schedule for consistency.

iii. Analysis with examples reveal that using the argument against the corollary, the

extreme values and the value obtained from a near optimal heuristic upon which the

normalization was carried out are all the same. Thus, the normalized value is

indeterminate (0/0).

(See Appendix IV, for illustrative example to demonstrate the need for normalization

and the validity of the proposed normalization procedure)

These points also apply to other scheduling problems for which optimal solutions exist.

Therefore, the corollary is valid. The extreme values of the following criteria are

determined using the corollary:

60

a. The completion time

The completion time (Ci) of job i is defined as:

 𝐶𝑖 = 𝐹𝑖 + 𝑟𝑖 (4.51)

Therefore, when the release date is zero, the flowtime is equal to the completion time.

The SPT algorithm also yields optimal solution for scheduling problem of minimizing

the total completion time under static condition. Thus, the extreme values of the

completion time are equal to that of the flowtime.

The minimum possible value of total completion time is given by:

 𝐶𝑡𝑜𝑡
𝑚𝑖𝑛 = 𝐹𝑡𝑜𝑡

𝑚𝑖𝑛 = ∑ 𝑝𝑖
𝑛
1 (4.52)

The maximum possible value of total completion time is given by:

 𝐶𝑡𝑜𝑡
𝑚𝑎𝑥 = 𝑛{∑ 𝑝𝑖

𝑛−1
𝑖=1 } + ∑ 𝑝𝑖

𝑛
𝑖=1 (4.53)

b. The total tardiness

A job is said to be tardy, if it is completed after its due date.

Total tardiness is given by: 𝑇𝑡𝑜𝑡 = ∑ 𝑇𝑖
𝑛
𝑖=1 = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)} 𝑛

𝑖=1 (4.54)

Since the tardiness can never be negative, it implies that the minimum possible value

of total tardiness, Tmin= 0.

The total tardiness is maximum when the completion time is maximum since the due

date is an independent variable.

The maximum possible value of total tardiness is given by:

 𝑇𝑡𝑜𝑡
𝑚𝑎𝑥 = (𝐶𝑡𝑜𝑡

𝑚𝑎𝑥 − ∑ 𝑑𝑛
𝑖=1 𝑖

) (4.55)

c. The total lateness

Lateness is the difference between the completion time and the due date of the job.

Lateness is given by; Li = (Cidi) (4.56)

Lateness is minimum when the completion time is minimum and it is maximum when

the completion time is maximum because the due date is an independent variable. Thus,

the extreme values of lateness are given by;

Minimum possible value of Total Lateness: 𝐿𝑡𝑜𝑡
𝑚𝑖𝑛 = (𝐶𝑡𝑜𝑡

𝑚𝑖𝑛 − ∑ d𝑛
𝑖=1 i

) (4.57)

Maximum possible value of Total Lateness: 𝐿𝑡𝑜𝑡
𝑚𝑎𝑥 = (𝐶𝑡𝑜𝑡

𝑚𝑎𝑥 ∑ d𝑛
𝑖=1 i

) (4.58)

61

d. The number of tardy jobs

Recall that a job is said to be tardy, if it is completed after its due date. Evidently, the

minimum possible number of tardy jobs is zero while the maximum possible number of

tardy jobs is the total number of jobs.

e. The number of late jobs

This measures the number of jobs that are completed after the due dates. The sum of the

number of late jobs and the number of early jobs is less than or equal to the total number

of jobs. Thus when the number of late jobs is maximum, the number of early jobs is

minimum (zero) and vice versa. Similarly, it is obvious that the minimum and maximum

possible values of average number of tardy jobs (NT avg) and average number of early

jobs (NEavg) criteria are 0 and 1, respectively.

Similarly, the minimum possible number of on time jobs (jobs completed on the given

due date) is zero while the maximum possible number of On time jobs is the total number

of jobs. Table 4.2 shows the equations to determine the extreme values of some

performance measures.

62

Table 4.2: The extreme values of some objective functions under static condition.

Objective function minimum value maximum value

The total flowtime
∑ 𝑃𝑖

𝑛

1

 𝑛 {∑ 𝑃𝑖

𝑛−1

𝑖=1

} + ∑ 𝑃𝑖

𝑛

𝑖=1

The total completion time
∑ 𝑃𝑖

𝑛

1

 𝑛 {∑ 𝑃𝑖

𝑛−1

𝑖=1

} + ∑ 𝑃𝑖

𝑛

𝑖=1

The total tardiness 0
𝐶𝑡𝑜𝑡

𝑚𝑎𝑥 − ∑ (𝑑𝑖)

𝑛

𝑖=1

The total lateness
𝐶𝑡𝑜𝑡

𝑚𝑖𝑛∑ 𝑑𝑖

𝑛

𝑖=1

 𝐶𝑡𝑜𝑡
𝑚𝑎𝑥 − ∑ (𝑑𝑖)

𝑛

𝑖=1

The total earliness
∑ 𝑑𝑖

𝑛

𝑖=1

− 𝐶𝑡𝑜𝑡
𝑚𝑎𝑥 (∑ 𝑑𝑖

𝑛

𝑖=1

𝐶𝑡𝑜𝑡
𝑚𝑖𝑛)

The total number of tardy jobs 0 N

The total number of late jobs 0 N

Average number of tardy jobs 0 1

Number of on time jobs 0 N

63

Therefore, once the normalized value of each criterion is known, the normalized

composite objective function of the multicriteria problem is given by:

𝑁𝑇𝐿𝐶𝑂𝐹 = 0.5 (𝑁𝑇𝑋 + 𝑁𝐹𝑌) (4.59)

where:

𝑁𝑇𝐿𝐶𝑂𝐹 is the normalized total composite function,

𝑁𝑋 is the normalized value of criterion X, and

𝑁𝑦 is the normalized value of criterion Y.

The value of 𝑁𝑇𝐿𝐶𝑂𝐹 will be used to assess the performance of the solution methods.

4.5 Solution Methods to the Bi-criteria Problems

The method used in this study involves implementation of the GAlg and the BB for the

Class II and III problems. The heuristic A and heuristic B from the literature were also

implemented for the Class II problem. For the Class III problem, the dynamic MDD

heuristic was also implemented since no direct heuristic was found in the literature. Two

heuristics were proposed for both classes.

4.5.1 Solution methods from the literature

The heuristics found in the literature for the Class II problem are outlined as follows;

i. Heuristic A: The jobs are arranged in EDD. Then, if there is a string of consecutive

tardy jobs at the end of the sequence, the tardy jobs are rearranged in SPT.

ii. Heuristic B: The jobs are arranged in non-decreasing order of pi –di. Then, if there

is a string of consecutive tardy jobs at the end of the sequence, the tardy jobs are

rearranged in SPT.

iii. The Generalized Algorithm (GAlg) for the Class II: The flowtime is minimised,

using the SPT algorithm, while the total tardiness is minimised, using the DMDD

rule.

Similarly, the heuristics implemented for the Class III problem are outlined as follows;

iv. The Generalized Algorithm (GAlg): The flowtime is minimised, using the KSAI

algorithm (Oyetunji et al., 2012), while the total tardiness is minimised, using the

Dynamic Modified Due Date (DMDD) algorithm (Naidu, 2002).

64

v. The DMDD Algorithm: Though the algorithm was proposed for static and dynamic

variants of scheduling problems for minimizing the total tardiness. The

performance of the DMDD algorithm as well as the sparsity of heuristics that solve

the Class III problem compelled the use of the heuristic for the bicriteria problem.

4.5.2 Application of the BB to solve the problem

The frontier search method was explored to branch, while the GAlg heuristic was used

to bound the branching tree. Let s denote a partial sequence of jobs from among the n

jobs originally in the problem. Also, let j(s) denote the partial sequence in which s is

immediately preceded by job j. Associated with j(s) is a value, 𝑉𝑠 which is the

contribution of the assigned jobs in each level to the total normalized LCOF. The value

of 𝑉𝑠 is calculated for all the nodes at each level and compared to the lower bound

obtained from the GAlg heuristic. Then, the nodes with 𝑉𝑠 values higher than the lower

bound value obtained from the GAlg are discarded, while other nodes are explored. The

process continues until all the jobs are scheduled.

4.5.3 The Proposed solution methods for the Class II problem

Bi-criteria scheduling problems are NP-hard. Therefore, heuristic approach are desired

to obtain good schedules. The two proposed heuristics; named HeuristicIII (HeuIII) and

HeuristicIV (HeuIV) are now described.

i. HeuIII :

The logic behind this method is as follows;

The total flowtime scheduling problem with zero release dates on single processor can

be solved optimally by the SPT algorithm, while the MDD algorithm yields a near-

optimal solution for the equivalent problem but with the total tardiness as the

performance measure.

Each of the criteria can be expressed mathematically as follows;

Total Tardiness (Ttot) : ∑ 𝑇𝑖
𝑛
𝑖=1 = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)} 𝑛

𝑖=1 (4.60)

Total Flowtime (Ftot) : ∑ 𝐹𝑖
𝑛
𝑖=1 = ∑ 𝐶𝑖 − 𝑟𝑖 𝑛

𝑖=1 (4.61)

For 𝑟𝑖 = 0

Total Flowtime (Ftot): ∑ 𝐹𝑖
𝑛
𝑖=1 = ∑ 𝐶𝑖 𝑛

𝑖=1 (4.62)

65

Analyses of the two algorithms reveal that the MDD algorithm favours the EDD rule at

the beginning of the schedule, while towards the tail end of the schedule, the algorithm

is biased towards the SPT rule. Thus, if the MDD and the SPT algorithms yield the same

schedule, the two solutions are either optimal or near-optimal solutions. Furthermore, if

the two solutions differ, the optimal schedule is a close neighbour to the schedules

obtained. The algorithm is as follows:

Initialization

JobSet A = [J1, J2, J3, …….Jn], set of given jobs

 JobSet B = [0], set of scheduled job

JobSet C = [J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj

STEP 1: Form JobSet D by arranging the JobSet A in the order of non-decreasing

processing time. If there is a tie, break it with the due date

STEP2: Form JobSet E by exploring the modified due date algorithm.

STEP 3: Compute the LCOF function; LCOF1 and LCOF2 for JobSet D and JobSet E,

respectively.

STEP 4: Set JobSet E as the required schedule (JobSet B), if LCOF2 is less than or equal

to LCOF1, otherwise, set JobSet D as the required schedule

STEP 5: Compute the objective function of the required schedule

STEP 6: Stop.

ii. HeuIV

This algorithm is based on the two independent variables upon which the two criteria

depend. These are the processing time and the due date. Furthermore, the SPT rule and

66

the MDD algorithm yield the optimal and the near optimal schedules for the total

flowtime and the total tardiness, respectively. The SPT rule explored the completion

time, the MDD algorithm utilized the modified due date (called the priority index).

Therefore, the two independent variables; the completion time and the modified due date

can also be linked to the LCOF of the two criteria. The completion time depends on the

processing time only, while the modified due date is a function of both the processing

time and the due date. Thus, the processing time is the dominant independent variable.

In this regard, the processing time is used to schedule the jobs, while the modified due

date is used to break the tie in the processing time of a job i at time t. The algorithm is

as follows:

Initialization

JobSet A = [J1, J2, J3, …….Jn], set of given jobs

JobSet B = [0], set of scheduled job

JobSet C = [J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj

STEP 1: Arrange the JobSet A in the order of increasing processing time

STEP2: Break the tie in step 1 by using the modified due date rule. If tie still exist, break

arbitrarily

STEP 2: Compute the objective function of the schedule

STEP 3: Stop.

4.5.4 Proposed solution methods for the Class III problem

Two heuristics (HeuV and HeuVI) are proposed for this problem. The heuristics are

now described.

67

i. HeuV

In order to minimise the composite function of total flowtime and total tardiness on a

single processor with non-zero release dates, three parameters are involved; the

processing time, the release date and the due date. The processing time and the release

date affect the two objectives, while the due date affects only the tardiness. In this regard,

the index defined as the sum of the due date, processing time and the release date (d+p+r)

is used as the pivot to schedule the jobs, while all the other parameters are used to break

the tie consecutively. The statement of the algorithm is as follows:

STEP 1: Initialization

JobSet A = [J1, J2, J3, …….Jn], set of given jobs

 JobSet B = [0], set of scheduled jobs

JobSet C = [J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj, n=number of jobs

STEP 2: Compute the index defined as the sum of the due date, processing time and the

release dates (di+pi+ri) for each of the jobs in JobSet A

STEP 3: Arrange the jobs in JobSet A in the order of non- decreasing index computed

in Step 2 and put the jobs in JobSet B

STEP 4: If there is a tie in JobSet B, break the tie using the release date, processing time

and the due date in that order. If tie still exists, break arbitrarily

STEP 5: Stop.

ii. HeuVI

This is a modification of the HeuV. It is based on the fact that the effect of the release

dates and the processing time is more significant on the linear composite of objective

function than the due date variable. This is because the processing time and the release

68

date affect the two objectives, while the due date has an effect on the tardiness only. The

steps of the heuristic now follows;

STEP 1: Initialization

JobSet A = [J1, J2, J3, …….Jn], set of given jobs

 JobSet B = [0], set of scheduled jobs

JobSet C = [J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj , n=number of jobs

STEP 2: Compute the index defined as the sum of the processing time and the release

date (pi+ri) for each of the jobs in JobSet A

STEP 3: Arrange the jobs in JobSet A in the order of increasing index computed in Step

2 and put the jobs in JobSet C

STEP 4: Arrange the jobs in JobSet A in the order of increasing release dates and put

the jobs in JobSet D

STEP 5: Compute the LCOF function; LCOF1 and LCOF2 for both JobSet C and JobSet

D, respectively

STEP 6: Set JobSet D as the required schedule (JobSet B), if LCOF2 is less than or equal

to LCOF1. Otherwise, set JobSet C as the required schedule

STEP 7: Stop.

4.6 Model Implementation

The proposed as well as the selected solution methods for each problem class were

implemented to solve some single processor scheduling problems. These include the

randomly generated problems and the real life problems collected from a firm.

69

4.6.1 Random problem generation

 The Gursel et al. (2012) concept was explored to generate a single processor scheduling

problems randomly. The relation was explained in section 3.1. The random problem

generation codes (written in MATLAB) is the same for the two dynamic environment

problems (Class I and III) but differ for the static problem (Class II). This is because the

release date is a variable in the former but zero in the latter. The random problem

generation file was saved as the PROBG and the PROBR for the dynamic and static

environment, respectively. The Figure 4.3 and 4.4 shows the screen shot of the PROBG

and the PROBR

70

Figure 4.3: Random generation code for the Class I and Class III (PROBG)

71

Figure 4.4: Screen shot of a Random problem generation code for the Class II

72

The generated problems were solved by the implemented solution methods. The

coding of the solution on Matlab Programing was executed with the following files;

i. The single instance file, which solves an instance of the problem,

ii. The execution file, where the number of instances required for any size

problem was loaded and solved to obtained the mean value of the objective

function, and

iii. The run problem file, where the single instant file and the execution file were

loaded and run to give the output.

Figure 4.5- 4.7 show the screen shot of a single instance file, the execution file, and the

run problem file for the HeuIV proposed for the Class II problem, respectively.

73

Figure 4.5a: Single instance file of the HeuIV Heuristic

74

Figure 4.5b : Single instance file of the HeuIV

75

Figure 4.5c: Single instance file of the HeuIV

76

Figure 4.6: The execution file of the HeuIV

77

Figure 4.7: The execution file of the HeuIV

78

4.7 The Real life Problem Size and the Current Firm Scheduling Policy

The data of received jobs for a period of four months were collected from a firm as

discussed in section 3.3. Jobs customer details form where the data were obtained were

pooled together for each month. The problem sizes varied depending on the number of

job accumulation under consideration. For 5, 10, and 15 jobs accumulation, the problem

sizes were determined by using the first 5, 10, and 15 jobs for each month. The baking

and spraying unit of the company schedule the jobs using the First Come, First Served

(FCFS), if the jobs on the queue were not received on the same date. This implies that

jobs are arranged in the order of increasing release date. However, if the jobs on the

queue were available on the same date, the firm explores the Shortest Processing Time

(SPT) rule. This implies that jobs are arranged in the order of non-decreasing processing

times.

Therefore, for the Class I and Class III problems, the implemented heuristics as well as

the firm existing scheduling policy (FCFS) were coded and applied on the data. The

same procedure was also carried out on the Class II with the Shortest Processing Time

(SPT) rule being explored by the firm. However, a slight modification was made in the

case of the Class II; the release dates of all the pooled jobs are set to zero.

The information gathered from the firm reveal that a tolerance of 1 to 2 days is usually

given to jobs that require a maximum of two to three days to complete. Also, for rentage

above five days, a week (5-7 days) tolerance is usually added. This is used to compute

the due date from the processing time.

79

CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Introduction

The results obtained in solving the simulated and the real life problems by the

implemented solution methods are discussed in this chapter. It involves evaluating the

effectiveness and the efficiency of the solution methods through various comparative

analyses of the objective function and the execution time, respectively.

5.2 Results Based on the Total Tardiness with Release Dates (2TRD)

The problem of minimizing the total tardiness of jobs with release dates on a single

processor was considered as the Class I. The results are now presented and discussed.

5.2.1 Results of the selected heuristics from the literature

The simulated problems were solved by the heuristics selected among the solution

methods found in the literature. Table 5.1 shows the mean of the total tardiness obtained.

Based on the results in Table 5.1, it can be inferred that for the problem ranges; 0 ≤ n ≤

60, the DMDD heuristic produced a better solutions, while for ranges; 80 ≤ n ≤ 1000,

the SPT rule performed better. Therefore, the DMDD and SPT heuristics were selected

for comparison to the proposed heuristics and the optimal solution from the BB

procedure.

80

Table 5.1: Mean of the total tardiness by solution methods and problem sizes

S/N

Problem sizes

MST

DMDD

EDD

ODD

SPT

1 5 x 1 48.64 2.82 2.82 48.64 38.42

2 7x1 95.25 15.12 15.12 95.25 79.56

3 8x1 137.45 17.4 18.1 137.45 112.62

4 10 x 1 236.82 44.75 45.82 236.82 175.25

5 15x1 498.16 169.32 171.72 498.16 409.18

6 20 x 1 961.94 427.5 413.16 961.94 728

7 25x1 1563 770.28 778.94 1563.2 1175.25

8 30x1 2202 1230 1241.75 2202 1705.15

9 40x1 3855.25 2450.2 2428 3855.25 2946

10 60x1 8803.35 6206 6268.2 8803 6521

11 80 x1 15848.2 11708.2 11833 15848 11534

12 100 x1 24571.1 18742.5 18970 24571.8 17981.7

13 150 x1 56134.1 44276.5 44776.1 56134 40324

14 200 x1 99492.1 80851.3 81742.2 99492.6 71485.2

15 300 x1 225690 186460 188840 225690 161070

16 400 x1 399540 334130 338160 399540 283210

17 500 x1 621480 519030 525160 621480 439550

18 1000 x1 2502600 2128400 2155700 2502600 1768400

81

5.2.2 Results of the proposed heuristics

The simulated problems solved by the selected solution methods from the literature were

also implemented for the proposed heuristics and the BB method. Table 5.2 shows the

total tardiness of the proposed heuristics, the BB algorithm and the two selected

approaches from literature.

82

Table 5.2: Mean of the total tardiness (2TRD) by solution methods and problem

sizes

 Proposed Heuristics Existing Heuristics Optimal

No Sizes HeuI HeuII DMDD SPT BB

1 5 x 1 4.32 0.96 2.82 38.42 0.26

2 7x1 12.5 5.96 15.12 79.56 4.98

3 8x1 14.54 12.00 17.4 112.62 10.25

4 10 x 1 33.9 29.18 44.75 175.25 21.56

 Mean 16.32 12.03 20.0225 101.463 9.26

5 15x1 150.46 146.2 169.32 409.1 84.14

6 20 x 1 407.74 394.25 407.5 728.2 285.5

7 25x1 768.25 757 770.28 1175.35 491.68

 Mean 442.15 432.48 449.03 770.91 287.11

8 30x1 1115.48 1245.1 1230.14 1705.78

9 40x1 2410.00 2550.04 2450.00 2946.92

10 60x1 5816.89 6462.00 6206.28 6521.75

11 80 x1 11040.52 12162.10 11708.50 11533.10

12 100 x1 16960.65 19522.00 18742.40 17981.90

13 150 x1 39134.35 45759.10 44276.20 40324.50

14 200 x1 70572.20 83296.10 80851.20 71485.10

15 300 x1 160210.00 192230.00 186460.00 161070.00

16 400 x1 282150.54 344000.00 334130.00 283210.00

17 500 x1 438690.26 533700 519031 439550

18 1000x1 1766400.48 2182100 2128401 1768401

 Mean 254045.56 311184 303044 254976

83

Table 5.2 shows that for the small-sized (5 ≤ n ≤ 10) and medium-sized (10 ≤ n ≤ 25)

problems, the HeuII yielded a better result besides the optimal solution method (BB).

Similarly, for the large-sized problems; 30 ≤ n ≤ 1000, the HeuI produced a better results

compared to other solution methods. The results were subjected to analytical tests in

order to measure the effectiveness of the solution methods for proper ranking. Also, a

high standard deviation implies that the values of objective function of problem

instances (in such problem size) shows a larger difference as the number of jobs

increases. This also justified the combinatorial nature of scheduling problems.

5.2.3 Approximation ratio test

This test shows the closeness of the heuristics to the optimal or the standard solution

method. It gives the overall measure of how many times the optimal or the standard

solution performed better than other implemented solutions. The BB results (the

optimal) were used for benchmarking the small-sized and medium-sized results while

the HeuI results were used as a standard solution for the problem ranges; 30 ≤ n ≤ 1000.

(See APPENDIX III, Table B, C and D for the approximation ratio Tables for the three

problem sizes).

Figure 5.1 shows the plots of approximation ratios for all the solution methods in the

problem ranges; 5 ≤ n ≤ 10. The results shows that the heuristics are closer to the BB

plot in the ranking order; HeuII, DMDD, HeuI, SPT. The Figure also shows that as the

problem size increases, the differences between the heuristics decreases. Figure 5.2

shows the plots of approximation ratios for the solution methods for the medium-sized

problems; 10 ≤ n ≤ 25. The Figure shows that the HeuII outperformed the DMDD

heuristic for the medium-sized problems. Therefore, the solution methods are closer to

the BB plot in the ranking order; HeuII, HeuI, DMDD, SPT. The Figure also shows that

as the problem size increases, the differences between the heuristics decreases.

84

Figure 5.1: Plots of approximation ratio of all the solution methods for 5 ≤n ≤ 10

0

20

40

60

80

100

120

140

160

5 x 1 7x1 8x1 10 x 1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem sizes

HeuI/BB HeuII/BB DMDD/BB SPT/BB BB

85

Figure 5.2: Plots of approximation ratio of all the solution methods for 10 ≤n ≤ 25

0

1

2

3

4

5

6

15x1 20 x 1 25x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

HeuI/BB HeuII/BB DMDD/BB SPT/BB BB

86

Furthermore, Table 5.3 and 5.4 show the overall means of approximation ratio of the

solution methods for the small-sized and medium-sized problems, respectively.

87

Table 5.3: The overall means of approximation ratio for the small-sized problems

Solution methods Overall means of approximation ratio

HeuI 5.53

HeuII 1.85

DMDD 4.42

SPT 45.71

BB 1.00

88

Table 5.4: The Overall means of approximation ratio for medium-sized problems.

Solution methods Overall means of approximation ratio

HeuI 1.59

HeuII 1.55

DMDD 1.66

SPT 3.26

BB 1.00

89

The overall means of approximation ratio computed implies that the HeuII, DMDD,

HeuI, and SPT are 1.85, 4.29, 5.53, and 45.71 times the optimal, respectively, on the

average for the small–sized problems.

Figure 5.3 shows the plots of approximation ratio for all the solution methods for the

large-sized problems; 30 ≤ n ≤ 1000. The Figure shows that for job ranges 30 ≤ n ≤ 60,

the DMDD and HeuII are closer to the standard solution (HeuI). However, as the

problem size increases to 80 jobs, the SPT method converges towards the standard

solution, while other solution methods diverge. This implies that the SPT performed

better than the DMDD and HeuII Heuristics. Furthermore, Table 5.5 shows the overall

means of approximation ratio of all the solution methods for the large-sized problems.

90

Figure 5.3: Plots of approximation ratio of all the solution methods for large-sized

problems

0.8

1

1.2

1.4

1.6

1.8

2

30x1 40x1 60x1 80 x1 100 x1 150 x1 200 x1 300 x1 400 x1 500 x1 1000 x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

e

Problem sizes

HeuI HeuII/HeuI DMDD/HeuI SPT/HeuI

91

Table 5.5: The overall means of approximation ratio for large sized problem

Solution methods Overall means of approximation ratio

HeuI 1.00

HeuII 1.16

DMDD 1.12

SPT 1.09

92

5.2.4 The t-test

The results from the Table 5.2 and the approximation ratio test revealed that there are

differences in the effectiveness of the solution methods. However, the analyses failed to

ascertain whether the observed differences are significant or not. The statistical t-test of

paired two samples for means was carried out, using Spreadsheet 2013 platform to

determine the significance of the observed difference. Tables 5.6-5.8 show the results of

the t-tests for the small-sized, medium-sized and the large-sized problems, respectively.

The t-test shows that for the small-sized problems, only the HeuII produced the results

that are not significantly different (α > 0.05) from the optimal, while other solution

methods results are significantly different from the optimal (α < 0.05). For the medium-

sized problems, only the SPT solution method produced a result that is significantly

different from the optimal. Table 5.8 shows that for the large-sized problems, the

differences in the performance of all the implemented solution methods are not

significantly different except for the SPT and HeuI. The HeuI performed significantly

better than the SPT. This is because the poor performance of the SPT heuristic in the

problem ranges 30 ≤ n ≤ 60 overcome its divergence when the number of jobs exceeded

80.

93

Table 5.6: t-test for mean of total tardiness for the small-sized problems.

Solution methods HeuI HeuII DMDD SPT BB

HeuI -------- >0.05 >0.05 < 0.05* < 0.05*

HeuII >0.05 ------- >0.05 < 0.05* > 0.05

DMDD >0.05 >0.05 ------- < 0.05* < 0.05*

SPT <0.05* < 0.05* < 0.05* ---------- < 0.05*

BB <0.05* > 0.05 < 0.05* <0.05* --------

Note: *indicates significant result; Sample size = 50; -----indicates not necessary

94

Table 5.7: t-test for mean of total tardiness for the medium-sized problems.

Solution methods HeuI HeuII DMDD SPT BB

HeuI -------- >0.05 >0.05 < 0.05* >0.05

HeuII >0.05 ------- >0.05 < 0.05* >0.05

DMDD >0.05 >0.05 ------- < 0.05* >0.05

 SPT <0.05* <0.05* <0.05* -------- <0.05*

BB > 0.05 > 0.05 > 0.05 < 0.05* -------

Note: *indicates significant result; Sample size = 50; -----indicates not necessary

95

Table 5.8: t-test for mean of total tardiness for the large- sized problems

Note: *indicates significant result; Sample size = 50; -----indicates not necessary

Solution methods HeuI HeuII DMDD SPT

HeuI ------- >0.05 >0.05 <0.05*

HeuII >0.05 ------- >0.05 >0.05

DMDD >0.05 >0.05 -------- >0.05

SPT <0.05* >0.05 >0.05 ------

96

5.2.5 The Optimal Count (O.C) test

The test counts the number of times the heuristics yielded the same value of the total

tardiness as the BB method. The test measures the chance of exploring optimal schedule

in service, if a given heuristics is implemented. Table 5.9 shows the result of the count

test. From the Table 5.9, it can be deduced that the number of times the heuristics yielded

the optimal reduces as the problem sizes increases. Also, the HeuII produced the best

results. The t-test result on the optimal count shows that, the HeuII is significantly better

than other result. This is shown in Table 5.9b

97

Table 5.9a: The Optimal Count test

S/No Problem Sizes HeuI HeuII DMDD SPT

1 5 x 1 54 78 58 0

2 7x1 44 60 42 0

3 8x1 30 56 24 0

4 10 x 1 22 48 10 0

 Mean Optimal count 37.5 60.5 33.5 0

5 15x1 6 14 2 0

6 20 x 1 0 0 0 0

7 25x1 0 0 0 0

98

Table 5.9b: t-test for the optimal count for the small- sized problems

Note: *indicates significant result; -----indicates not necessary

Solution methods HeuI HeuII DMDD SPT

HeuI ------- <0.05* >0.05 <0.05*

HeuII <0.05* ------- <0.05* <0.05*

DMDD >0.05 <0.05* -------- <0.05*

SPT <0.05* <0.05* <0.05* ------

99

5.2.6 The consistency test

The number of times the heuristic achieved optimality, the closeness of the heuristics to

the optimal, as well as the significance of the observed differences to the optimal or the

standard solution has been measured by the optimal count test, approximation ratio test

and t-test, respectively. However, none of the tests measure the consistency of the

solution methods in all the problem sizes in the fifty problem instances solved. To

achieve this, the consistency test was carried out. The test involves counting the number

of times each of the solution method yields the best result (the minimum mean value of

total tardiness) in the fifty instances solved for each problem size. Table 5.10 shows the

results of the consistency test.

100

Table 5.10: The Consistency test for all the problem sizes 5≤n ≤ 1000.

S/No HeuI HeuII DMDD SPT Rank

5 x 1 2 100 4 0 HeuII, DMDD, HeuI, SPT

7x1 4 100 6 0 HeuII, DMDD, HeuI, SPT

8x1 12 96 0 0 HeuII, DMDD, HeuI, SPT

10 x 1 10 96 2 0 HeuII, DMDD, HeuI, SPT

15x1 26 82 0 0 HeuII, DMDD, HeuI, SPT

20 x 1 38 66 12 0 HeuII, DMDD, HeuI, SPT

25x1 50 54 4 0 HeuII ,DMDD, HeuI, SPT

30x1 66 40 52 0 HeuI, DMDD, HeuII, SPT

40x1 56 20 32 10 HeuI, HeuII, DMDD, SPT

60x1 70 24 14 24 HeuI, HeuII, SPT, DMDD

80 x1 80 2 10 56 HeuI, SPT , DMDD, HeuII

100 x1 82 0 0 72 HeuI, SPT , DMDD ,HeuII

150 x1 86 0 0 82 HeuI, SPT , DMDD ,HeuII

200 x1 86 0 0 80 HeuI, SPT , DMDD ,HeuII

250 x1 90 0 0 84 HeuI, SPT , DMDD ,HeuII

300 x1 90 0 0 84 HeuI, SPT , DMDD ,HeuII

400 x1 92 0 0 86 HeuI, SPT , DMDD ,HeuII

500 x1 94 0 0 90 HeuI, SPT , DMDD ,HeuII

1000 x1 98 0 0 90 HeuI, SPT , DMDD ,HeuII

101

Therefore, based on effectiveness, it can be inferred that

i. The HeuII is recommended for the small and medium-sized problems.

ii. The HeuI is recommended for the large- sized problems.

5.2.7 Real life results based on the total tardiness problem

Some real life single processor scheduling problems data were collected from VAL-

VAL auto clinic to demonstrate the utility of the proposed models. All the implemented

heuristics for simulated problems as well as the firm existing scheduling policy (FCFS)

were applied on the data. The objective was to minimise the total tardiness. The results

of the mean value of the total tardiness for the problem sizes are shown in Tables 5.11.

102

Table 5.11: The mean of the total tardiness by solution methods for real life

problems

Problem size Sample size HeuI HeuII DMDD SPT FCFS

5x1 20 6.2 4.85 5.35 9.25 9.05

10x1 6 44.8 38.5 42.8 61 49

15x1 6 68.2 64.8 167.7 171.7 76.8

103

In order to recommend a scheduling policy for the firm, the percentage loss or gain of

the existing FCFS policy with respect to each of the implemented solution methods was

carried out. These are shown in Tables 5.12 – 5.14.

104

Table 5.12: Percentage gain or loss by adopting the HEUI policy

Problem Sizes
Sample

size
HeuI FCFS Difference

% gain (total

tardiness)
Remark

5x1 20 6.2 9.05 2.85 +46% Gain

10x1 6 44.8 49 4.2 +9.40% Gain

 15x1 6 68.2 76.8 8.6 +12.7 Gain

Mean of percentage gain by adopting the HeuI policy 22.7%

Gain

105

Table 5.13: Average gain or loss by adopting the HEUII policy

Problem size
Sample

size
HEUII FCFS Difference

%gain

(total

tardiness)

Remark

5x1

4.85 9.05

4.2 +86.6% Gain 20

10x1

38.5 49

10.5 +27.3% Gain 6

15x1

64.8 76.8

12 +19% Gain 6

 Mean of percentage gain by adopting the HeuII policy 44.3%

Gain

Standard deviation of percentage gain by adopting the HeuII policy 36.9%

106

Table 5.14: Average gain or loss by adopting DMDD

Problem

size

Sample

size
DMDD FCFS Difference

% gain or

loss(total

tardiness)

Remark

5x1 20 5.35 9.05 3.7 +69% Gain

10x1 6 42.8 49 6.2 +15% Gain

15x1 6 167.7 76.8 -90.9 -118% Loss

107

Table 5.15: Average gain or loss by employing SPT

Problem

sizes

Sample

size FCFS SPT Difference

% loss (total

tardiness) Remark

5x1

20 9.05 9.25 −0.25 -2.76% Loss

10x1

6 49 61 −12 -24.5% Loss

15x1

6 76.8 171.7 −94.6 -123% Loss

108

The gains and losses from the Table 5.12 show that there is percentage gain in total

tardiness by implementing the HeuI for the three problem sizes. Table 5.13 shows that

the HeuII scheduling policy is better than the FCFS policy currently in practice. Also,

the benefits of adopting the HeuII scheduling policy was found to be greater than that of

the HeuI policy. Therefore, the HeuII scheduling policy is recommended over the HeuI

policy. Table 5.14 shows that the DMDD scheduling policy is not the best method for

the firm when the number of vehicles on the queue is fifteen jobs. Though, it was found

that the policy is better than the FCFS employed by the firm when there are 5 and 10

vehicles on the queue. Table 5.15 shows that by adopting the SPT policy over the

currently practiced FCFS policy would lead to loss of effectiveness. Thus, the SPT

policy is not suited to the firm environment for jobs not received on the same date.

5.2.8 Results based on the execution time with respect to the total tardiness

The performance of the implemented solution methods were also measured based on the

time required to solve an instance of the problem. Table 5.15 shows the mean execution

time obtained for all the solution methods by problem sizes.

109

Table 5.16: Mean of the execution time by solution methods and problem sizes.

Proposed Heuristics Existing Heuristics Optimal

S/No
Problem

Sizes

HeuI

HeuII

DMDD

SPT

BB

1 5 x 1 0.00061 0.00063 0.00067 0.0002 288

2 7x1 0.00061 0.00064 0.00067 0.0002 962

3 8x1 0.00062 0.00065 0.00067 0.0002 1560

4 10 x 1 0.00064 0.00066 0.00069 0.0002 2979

5 15x1 0.00069 0.0007 0.00078 0.0002 4535

6 20 x 1 0.00071 0.00075 0.00086 0.00023 8727

7 25x1 0.00072 0.00074 0.00092 0.00026 17128

8 30x1 0.00075 0.00077 0.00099 0.00028

10 40x1 0.00079 0.00079 0.00148 0.00029

11 60x1 0.00083 0.00085 0.00196 0.00031

12 80 x1 0.00087 0.00089 0.00277 0.00035

13 100 x1 9.10E-05 9.3E-05 0.00362 3.70E-05

14 150 x1 0.0095 0.0096 0.083 0.00398

15 200 x1 0.00119 0.0012 0.0057 0.00041

16 300 x1 0.0023 0.0011 0.0472 0.00048

17 400 x1 0.00284 0.00065 0.0791 0.00057

18 500 x1 0.00352 0.0075 0.0866 0.00067

19 1000 x1 0.0049 0.0054 0.1321 0.00089

110

Expectedly, the BB method has the highest execution time. The time complexity

associated with this method limits its application for large-sized problems. The Table

also shows that the SPT algorithm yielded the best results (the minimum execution time).

Furthermore, the t-test and approximation ratio test were carried out to measure the

efficiency of the solution methods.

5.2.9 The t-test

The t-tests was carried out to ascertain whether the differences observed between the

execution times of the SPT and other heuristics were significant. The statistical t-test of

paired two-samples for means was carried out, using spreadsheet 2013 data analysis.

Table 5.16-5.18 show the results of t-test for the three problem sizes (small, medium and

large sized problems)

111

Table 5.17: t-test for mean execution time for 5 ≤n ≤ 10 problems

Solution methods HeuI HeuII DMDD SPT BB

HeuI --------- >0.05 >0.05 <0.05* <0.05*

HeuII >0.05 ------- >0.05 <0.05* <0.05*

DMDD <0.05* <0.05* ------- <0.05* <0.05*

SPT <0.05* <0.05* <0.05* ---------- <0.05*

BB <0.05* <0.05* <0.05* <0.05* ---------

112

Table 5.18: t-test for mean execution time for 10 ≤n ≤ 25 problems

Solution methods HeuI HeuII DMDD SPT BB

HeuI --------- >0.05 <0.05* <0.05* <0.05*

HeuII >0.05 ------- <0.05* <0.05* <0.05*

DMDD <0.05* <0.05* ------- <0.05* <0.05*

SPT <0.05* <0.05* <0.05* ---------- <0.05*

BB <0.05* <0.05* <0.05* <0.05* -----

113

Table 5.19: t-test for mean execution time for 30 ≤n ≤ 1000 problems

Solution methods HeuI HeuII DMDD SPT

HeuI --------- >0.05 <0.05* >0.05

HeuII >0.05 ------- <0.05* >0.05

DMDD <0.05* <0.05* ------- <0.05*

SPT >0.05 >0.05 <0.05* ----------

Note* indicates significant result; Sample size = 50 ; -----indicates not necessary

114

The results of the t-tests show that the execution time of SPT hare significantly better

(α0.05 > 0.05) than other solution methods for the small-sized and the medium-sized

problems. However, for large-sized problems, the execution time of SPT is not

significantly different from that of the HeuI and HeuII. Also, the two proposed heuristics

are significantly faster than the DMDD (α0.05< 0.05) for the medium-sized and large-

sized problems.

5.2.10 The approximation ratio test for the execution time

The approximation ratio test was also used to compare the execution time of the

heuristics. In this case, the SPT algorithm was used as the standard solution method (See

APPENDIX 1, Table E for the approximation ratio Table). Figure 5.4-5.6 show the plots

of approximation ratio for all the solution methods for the three problem classes.

115

Figure 5.4: Plots of approximation ratio of solution methods for 5 ≤n ≤ 10

0

0.5

1

1.5

2

2.5

3

3.5

4

5 x 1 7x1 8x1 10 x 1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

HeuI/SPT HeuII/SPT DMDD/SPT SPT

116

Figure 5.5: Plots of approximation ratio of solution methods for 15 ≤n ≤ 25

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

15x1 20 x 1 25x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

HeuI/SPT HeuII/SPT DMDD/SPT SPT

117

Figure 5.6: Plots of approximation ratio of solution methods for 30 ≤n ≤ 1000

0

20

40

60

80

100

120

140

160

30x1 40x1 60x1 80 x1 100 x1 150 x1 200 x1 300 x1 400 x1 500 x1 1000 x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem sizes

HeuI/SPT HeuII/SPT DMDD/SPT SPT

118

The results show that as the problem size increases, the DMDD solution method diverges

away from the standard solution. Thus, for the three problem sizes, the heuristics can be

ranked in the order: SPT, HeuI, HeuII, DMDD. Furthermore, the overall means of

approximation ratios (of the execution time) for all the solution methods for the three

problem sizes are shown in Tables 5.20-5.22.

119

Table 5.20: The overall means of the approximation ratio for small sized problems

Solution methods Overall means of approximation ratio

BB 7262500

HeuI 3.1

HeuII 3.23

DMDD 3.38

SPT 1.0

120

Table 5.21: The overall means of the approximation ratio for medium sized

problems

Solution methods Overall means of approximation ratio

BB 42333333

HeuI 3.1

HeuII 3.16

DMDD 3.73

SPT 1.0

121

Table 5.22: The overall means of the approximation ratio for large-sized problems

Solution methods Overall means of approximation ratio

HeuI 3.53

HeuII 3.57

DMDD 60.93

SPT 1.00

122

The results based on the mean execution time show that the SPT heuristic is the most

efficient solution method compare to other solution. However, with the exception of BB,

no other solution requires prohibitive execution time.

Heuristics are being explored to obtain effective solution within an acceptable

computation time. Though, SPT heuristic is the most efficient solution method, the

heuristic is the least effective solution compared to other methods. Also, the two

proposed heuristics; HeuII and HeuI, which are the most effective solution methods,

have execution-time approximation ratio of HeuII(3.23, 3.1, 3.57), HeuI(3.1, 3.2, 3.53)

with respect to the SPT for the small, medium and large sized problems respectively.

However, the effectiveness approximation ratio of SPT are 45.71, 3.27 compared to

HeuII (1.85, 1.55), HeuI(5.53,1.59) with respect to the optimal for the small and medium

sized problems, respectively. Also, the HeuII yielded optimal in 60.5% for small-sized

problems compare to 0% in SPT. In this regards, the performance of the two proposed

heuristics with respect to the effectiveness and efficiency justified the selection of the

HeuII and HeuI for the small and medium-sized and large sized problems, respectively.

Furthermore, the two proposed heuristics performed better than the DMDD. In terms of

effectiveness and efficiency, the analytical tests reveal that the HeuII performed better

than the DMDD for the small and medium-sized problems. For large-sized problems,

the HeuI performed better than the HeuII and the DMDD. Thus, the HeuII is

recommended over the DMDD for the small and medium sized problems, while the HeuI

is recommended for the large-sized problems.

5.3 Results Based on the Bi-criteria Scheduling Problem

The bi-criteria scheduling problem of minimizing the composite function of total

tardiness and total flowtime of jobs with zero release dates on single processor was

explored as the Class II of this work. The dynamic variant of the problem was named

the Class III. The results of the simulated problems and the real life problems for the bi-

criteria approaches are presented in this section. For the simulated problems, the results

include the mean of the normalized composite function of total tardiness and total

flowtime of all the implemented solution methods for the two classes. The execution

time are also presented. For the real life problems, the mean of the normalized composite

objective for all the implemented solution methods were compared to that of the firm

123

scheduling policy. The expected gain or loss for the firm, if a new scheduling policy

were to be adopted, was computed and expressed as a percentage. This should aid the

decision of the firm in adopting the most effective scheduling policy.

5.4 Results Based on the Static Variant of the Bi-criteria Problem (3TFZRD)

The mean values of the normalized total LCOF by solution methods and problem sizes

are shown in Table 5.23.

124

Table 5.23: Mean value of the normalized total LCOF by solution methods

 Existing

Heuristics

Implemented

Heuristics

Proposed

Heuristics
Optimal

S/N Sizes HeuA HeuB GAlg HeuIII HeuIV BB

1 5x1 0.2900 0.5689 0.2975 0.2823 0.313 0.2823

2 7x1 0.3122 0.5598 0.3144 0.3015 0.3107 0.3015

3 8x1 0.3289 0.563 0.3168 0.3115 0.3225 0.3115

4 10x1 0.3451 0.5568 0.3293 0.3281 0.3304 0.3281

 Mean 0.3191 0.5621 0.3145 0.3059 0.3192 0.3059

5 15x1 0.357 0.5684 0.3353 0.3345 0.3355 0.3345

6 20x1 0.3669 0.571 0.344 0.3437 0.3441 0.3436

7 25x1 0.3648 0.5765 0.3413 0.3411 0.3413 0.3410

 Mean 0.3629 0.5719 0.3402 0.33977 0.3403 0.3397

8 30x1 0.3675 0.5777 0.3439 0.3438 0.3439

9 40x1 0.3718 0.5776 0.348 0.3478 0.3479

10 60x1 0.3708 0.5873 0.3476 0.3476 0.3477

11 80 x1 0.3715 0.5891 0.3478 0.3478 0.3479

12 100 x1 0.374 0.5848 0.3489 0.3489 0.3489

13 150 x1 0.3746 0.5892 0.3509 0.3507 0.3508

14 200 x1 0.3738 0.5891 0.3491 0.3491 0.3491

15 300 x1 0.3751 0.59 0.3511 0.3511 0.3511

16 400 x1 0.3773 0.588 0.3528 0.3501 0.3503

17 500 x1 0.3761 0.5897 0.3519 0.3519 0.3519

18 1000 x1 0.3766 0.5987 0.3523 0.3523 0.3523

 Mean 0.3736 0.5874 0.34948 0.34919 0.3492

125

The results obtained show that the solution methods can be ranked in the order: HeuIII,

GAlg, HeuIV, HeuA, HeuB. The trends of the results for the small-sized, medium-sized

and large -sized problems were subjected to analytical tests to measure the effectiveness

of the heuristics.

5.4.1 The t-test

To ascertain whether the differences observed are significant, t-tests for paired two-

samples for means were carried out, using the spreadsheet 2013 data analysis. Tables

5.24- 5.26 show the results of the t- tests for the small, medium and the large problem

sizes, respectively. Furthermore, Table 5.27 and 5.28 show the overall means of

approximation ratio of all the solution methods for the small-sized and the medium-sized

problems, respectively.

126

Table 5.24: t-test for the mean value of the total LCOF for small-sized problems

(5≤n≤10)

Solution

method

GAlg HeuIII HeuIV HeuA HeuB BB

GAlg ---- <0.05* >0.05 <0.05* <0.05* <0.05*

HeuIII <0.05* ------ >0.05 <0.05* <0.05* >0.05

HeuIV >0.05 >0.05 ----- <0.05* <0.05* >0.05

HeuA <0.05* <0.05* >0.05 -------- >0.05 <0.05*

HeuB <0.05* <0.05* <0.05* >0.05 -------- <0.05*

BB <0.05* >0.05 >0.05 <0.05* <0.05* ---------

127

Table 5.25: t-test for mean for total LCOF for medium-sized problems

(10 ≤n ≤ 25)

Solution

method

GAlg HeuIII HeuIV HeuA HeuB BB

GAlg ---- >0.05 >0.05 <0.05* <0.05* >0.05

HeuIII <0.05* ------ >0.05 <0.05* <0.05* >0.05

HeuIV >0.05 >0.05 ----- <0.05* <0.05* >0.05

HeuA <0.05* <0.05* >0.05 -------- >0.05 <0.05*

HeuB <0.05* <0.05* <0.05* >0.05 -------- <0.05*

BB <0.05* >0.05 >0.05 <0.05* <0.05* ---------

128

Table 5.26: t-test for total LCOF for large-sized problems (30 ≤n ≤ 1000)

Solution method GAlg HeuIII HeuIV HeuA HeuB

GAlg ---- >0.05 >0.05 <0.05* <0.05*

HeuIII >0.05 ------ >0.05 <0.05* <0.05*

HeuIV >0.05 >0.05 ----- <0.05* <0.05*

HeuA <0.05* <0.05* <0.05* -------- >0.05

HeuB <0.05* <0.05* <0.05* >0.05 --------

Note* indicates significant result; Sample size = 50; -----indicates not necessary.

129

The t-tests results show that for the small and medium-sized problems, only the two

proposed heuristics yielded results that are not significantly different from the optimal,

while the heuristics found in the literature (the GAlg, HeuA and HeuB) produced results

that are significantly different from the optimal. Also, the HeuIII, HeuIV, and GAlg are

all significantly better than the HeuA and HeuB. In addition, the two existing heuristics

(HeuA and HeuB) produced results that are significantly different (p < 0.05) from each

other. The HeuA is significantly better than the HeuB. For the large-sized problems, the

two proposed heuristics as well as the implemented GAlg are not significantly different

from each other but are significantly better than the HeuA and HeuB.

5.4.2 The approximation ratio test

The BB solution results (the optimal) were used to compute the approximation ratio for

other heuristics in the problem range 5 ≤ n ≤ 25 (small and medium-sized problems).

The HeuIII heuristic results were used to compute the approximation ratio for other

solution methods for large-sized problem (See APPENDIX III, Tables F, G, and H for

the approximation ratio Tables for the three problem sizes). Figure 5.7 and 5.8 show the

plots of approximation ratios for the solution methods for the small-sized and medium-

sized problems respectively. From the result, it can be observed that the HeuB plot is far

away from the optimal (BB) plot compared to other solution methods.

130

Figure 5.7: Plots of approximation ratio of solution methods for 5 ≤ n ≤ 10

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

5x1 7x1 8x1 10x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem sizes

HeuA/BB HeuB/BB GAlg/BB HeuIII/BB HeuIV/BB BB

131

 Figure 5.8: Plots of approximation ratio of solution methods for 15 ≤ n ≤ 25

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

15x1 20x1 25x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem sizes

HeuA/BB HeuB/BB GAlg/BB HeuIII/BB HeuVI/BB BB

132

Table 5.27: The overall means of approximation ratio for ranges; 5≤n ≤ 10.

Solution methods Overall means of approximation ratio

HeuIII 1.00

HeuIV 1.04

GAlg 1.04

HeuA 1.05

HeuB 1.84

BB 1.00

133

Table 5.28: The overall means of approximation ratio for ranges; 15≤n ≤ 25.

Solution methods Overall means of approximation ratio

HeuIII 1.0002

HeuIV 1.002

GAlg 1.01

HeuA 1.08

HeuB 1.68

BB 1.00

134

Similarly, Figure 5.9 shows the plots of approximation ratio for all the solution methods

in the problem range; 30 ≤ n ≤ 1000. The plots show that the HeuA and the HeuB show

a wider difference compare to other heuristics.

135

 Figure 5.9: Plots of approximation ratio by problem sizes 30 ≤ n ≤ 1000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

30x1 40x1 60x1 80 x1 100 x1 150 x1 200 x1 300 x1 400 x1 500 x1 1000 x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

GAlg/HeuIII HeuA/HeuIII HeuB/HeuIII HeuIV/HeuIII HEUIII

136

Furthermore, Table 5.29 shows the overall means of approximation ratio of all the

solution methods for the large-sized problems.

137

Table 5.29: The overall means of approximation ratio for the ranges;

30≤n ≤ 1000

Solution methods Overall means of approximation ratio

HeuIV 1.0003

GAlg 1.0009

HeuA 1.0700

HeuB 1.6800

HeuIII 1.0000

138

5.4.3 The Optimal Count (OC) test

The test count the number of time the heuristics yield the same value of the objective

function as the BB method. Table 5.30 shows the result of count test.

139

Table 5.30: The Optimal Count test

S/No Problem sizes

HeuIII

HeuIV

HEUA

HEUB

GAlg

1 5 x 1 96 78 26 0 84

2 7x1 96 76 16 0 84

3 8x1 94 76 12 0 84

4 10 x 1 90 72 10 0 80

 Mean 94 75.5 16 0 83

5 15x1 86 64 4 0 74

6 20 x 1 82 70 0 0 68

7 25x1 78 54 0 0 60

140

Based on the optimal count test results, the heuristics can be arranged in the order;

HeuIII, GAlg, HeuIV, HeuA, HeuB. Furthermore, the result of t-test on the optimal

count shows that the HeuIII result is significantly different from the other heuristics

results. This is shown in Table 5.30b.

141

Table 5.30b : t-test for the Optimal count for the small-sized problem

Solution method GAlg HeuIII HeuIV HeuA HeuB

GAlg ---- <0.05* <0.05* <0.05* <0.05*

HeuIII <0.05* ------ <0.05* <0.05* <0.05*

HeuIV <0.05* <0.05* ----- <0.05* <0.05*

HeuA <0.05* <0.05* <0.05* -------- >0.05

HeuB <0.05* <0.05* <0.05* <0.05* --------

142

5.4.4 The consistency test

The consistency test was carried out to measure the tendency of a solution method to

obtain best result in the fifty instances for all the problem sizes. The number of times

each of the solution methods yielded the best results were expressed in percentage.

This is shown in Table 5.31.

143

Table 5.31: The consistency test

Sizes GAlg HeuIII HeuIV HeuA HeuB Rank

5x 1 64 98 48 30 0
HeuIII, GAlg, HeuA,

GAlg, HEUIV, HEUB.

7x1 66 98 42 24 0
HEUIII, GAlg, HeuA,

GAlg, HEUIV, HEUB.

8x1 74 98 40 22 0
HEUIII, GAlg, HEUA,

GAlg, HEUIV, HEUB.

10x1 82 94 38 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB,

15x1 56 78 38 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

20x 1 82 86 40 0 2
HEUIII, GAlg, HEUIV,

HEUA, HEUB

25x1 98 90 44 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

30x1 72 94 34 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

40x1 74 100 34 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

60x1 94 100 42 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

80 x1 94 96 36 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

100 x1 96 100 34 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

150 x1 92 98 34 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

144

Table 5.31 Cont’d

Sizes GAlg HeuIII HeuIV HeuA HeuB Rank

200 x1 100 100 58 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

250 x1 94 100 86 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

300 x1 96 100 92 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

400 x1 100 100 98 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

500 x1 98 100 96 0 0
HEUIII, GAlg, HEUIV,

HEUA, HEUB

1000

x1
100 100 98 0 0

HEUIII, GAlg, HEUIV,

HEUA, HEUB

145

5.4.5 Real life results based on static variant of the bicriteria problem

The real life single processor scheduling problems data collected from VAL-VAL auto

clinic were also implemented to demonstrate the utility of the heuristics proposed for the

Class II problem. All the implemented heuristics as well as the firm existing scheduling

policy (SPT) for jobs available on the same date were applied on the data. The objective

was to minimise the composite function of the total tardiness and total flowtime. The

results of the total normalized composite function obtained by all the solution methods

are shown in Table 5.32.

146

Table 5.32: The mean of normalized total LCOF for the real life problem

Problem

Size

Sample

size HeuA HeuB

HeuIII HeuIV GAlg

SPT

5x1

20 0.2556 0.6049

0.1376 0.1498 0.1378

0.5701

10x1

5 0.2796 0.5392

0.2774 0.2779 0.2776

0.5930

15x1

5 0.4169 0.6124

0.2975 0.3467 0.3012

0.6572

147

In order to advise the firm on the best scheduling policy that suit its environments, the

gain or loss from the use of any other scheduling policies compared to the SPT were

computed. These are shown in Tables 5.33 – 5.37.

148

Table 5.33: Average gain or loss by adopting the HEUA policy

Problem

sizes

Sample

size HEUA SPT Difference Remark

5x1 20 0.2556

0.5701 +0.3145 Gain

10x1 5 0.2796

0.5930 +0.3134 Gain

15x1 5 0.4169

0.6572 +0.2403 Gain

149

Table 5.34: Average gain or loss by adopting the HeuB policy

Problem sizes Sample size HeuB SPT Difference Remark

5x1 20 0.6049

0.5701 -0.0348 Loss

10x1 5 0.5392

0.5930 +0.0538 Gain

15x1 5 0.6124

0.6572 +0.0448 Gain

150

Table 5.35: Average gain or loss by adopting the GAlg policy

Problem sizes Sample size GAlg SPT Difference Remark

5x1 20 0.1378

0.5701 +0.4323 Gain

10x1 6 0.2776

0.5930 +0.3154 Gain

15x1 6 0.3012

0.6572 +0.356 Gain

151

Table 5.36: Average gain or loss by adopting the HeuIII policy

Problem sizes Sample size HeuIII SPT Difference Remark

5x1 20

0.1376

0.5701 +0.4325 Gain

10x1 6

0.2774

0.5930 +0.3156 Gain

15x1 6

0.2975

0.6572 +0.3597 Gain

152

Table 5.37: Average gain or loss by adopting the HeuIV policy

Problem sizes Sample size HeuIV SPT Difference Remark

5x1 20 0.1498

0.5701 +0.4203 Gain

10x1 6 0.2779

0.5930 +0.3151 Gain

15x1 6 0.3467

0.6572 +0.3105 Gain

153

However, since the objectives were normalized, the normalized average gains or losses

is converted to percentage in order to make the best decision with regard to the preferred

scheduling policy. The percentage gain or loss by adopting any new policy are shown in

Tables 5.38-5.42.

154

Table 5.38: Percentage gain or loss by adopting the HEUA policy

Problem

sizes

Sample

size HEUA SPT Difference

%gain (total

tardiness) Remark

5x1 20 0.2556

0.5701 0.3145

+123% Gain

10x1 5 0.2796

0.5930 0.3134

+112% Gain

15x1 5 0.4169

0.6572 0.2403

+57.7% Gain

Percentage gain by adopting the HEUA policy 97.6%

155

Table 5.39: Percentage gain or loss by adopting the HEUB policy

Problem sizes

Sample

size HEUB SPT Difference

%gain (total

tardiness) Remark

5x1 20 0.6049

0.5701 -0.0348

-5.7% Loss

10x1 5 0.5392

0.5930 0.0538

+9.98% Gain

15x1 5 0.6124

0.6572 0.0448

+7.35% Gain

Percentage gain by adopting the HEUB policy 3.88%

156

Table 5.40: Percentage gain or loss by adopting the GAlg policy

Problem

sizes

Sample

size GAlg SPT Difference

%gain (total

tardiness) Remark

5x1 20 0.1378

0.5701 0.4323

+313% Gain

10x1 6 0.2776

0.5930 0.3154

+113% Gain

15x1 6 0.3012

0.6572 0.356

+118% Gain

157

Table 5.41: Percentage gain or loss by adopting the HeuIII policy

Problem

sizes

Sample

size HeuIII SPT Difference

%gain (total

tardiness) Remark

5x1 20

0.1376

0.5701 0.4325

+314% Gain

10x1 6

0.2774

0.5930 0.3156

+113% Gain

15x1 6

0.2975

0.6572 0.3597

+121% Gain

Mean of Percentage gain or loss by adopting the HEUIII policy 182.7%

Mean of Percentage gain or loss by adopting the HEUIII policy ±113.8%

158

Table 5.42: Percentage gain or loss by adopting the HeuIV policy

Problem

sizes

Sample

size HeuIV SPT Difference

%gain

(time) Remark

5x1 20 0.1498

0.5701 0.4203

+281% Gain

10x1 6 0.2779

0.5930 0.3151

+112% Gain

15x1 6 0.3467

0.6572 0.3105

+89.6% Gain

Percentage gain or loss by adopting the HeuIV policy 160.9

159

Results obtained from Table 5.38 implied that by adopting the HEUA method over the

existing SPT policy, the firm would experience positive changes (gain) in performance,

which is expressed as the percentage change in time.

Results obtained from Table 5.39 implied that by adopting the HeuB policy over the

existing SPT method, the firm would experience a loss in performance if the

accumulated jobs is five but would experiences positive changes for ten and fifteen

accumulated jobs. This is expressed as the percentage change in total tardiness. Results

obtained from Table 5.40 implied that by adopting the GAlg heuristic over the existing

SPT policy, the firm would experience positive changes (gain) in performance which is

expressed as the percentage change in time. The percentage gain from the three problem

sizes considered is greater than that of HeuA and HeuB. Thus; GAlg heuristics is

recommended over HeuA and HeuB.

Results obtained from Table 5.41 implied that by adopting the HeuIII over the existing

SPT policy, the firm would experience positive changes (gain) in performance which is

expressed as the percentage change in time. The percentage gain from the three problem

sizes considered is greater than that of GAlg, HeuA and HeuB. Thus; the HeuIII is

recommended over the GAlg, HeuA and HeuB. Results obtained from Table 5.42

implied that by adopting the HeuIV over the existing SPT policy, the firm would

experience positive changes (gain) in performance which is expressed as the percentage

change in time. The percentage gain from the three problem sizes considered is lesser

than that of the HeuIII and GAlg but greater than that of HeuA and HeuB. Therefore,

HeuIII scheduling policy is recommended for the firm for jobs received on the same

date.

5.4.6 Results based on the efficiency for the static variant of the problem

The efficiency of an algorithm is measured through the execution time required to solve

an instance of a given problem. In order to show the overall performance of the solution

methods, the efficiency was also considered. In this regard, the mean of execution time

to complete each problem size was computed. Table 5.43 shows the mean of the total

execution time by solution methods and problem sizes.

160

Table 5.43: Mean of the total execution time by solution methods and problem sizes

Existing

Heuristics

Proposed

Heuristics

Implemented

Optimal

S/N Sizes HeuA HeuB HeuIII HeuIV GAlg BB

1 5 x 1 0.00065 0.00081 0.0016 0.0027 0.0036 2486.25

2 7x1 0.0007 0.00083 0.0018 0.003 0.0037 3012.12

3 8x1 0.00072 0.00083 0.0018 0.0032 0.0037 3215.45

4 10 x 1 0.00076 0.00085 0.0019 0.0035 0.0039 3472.12

5 15x1 0.00087 0.0009 0.0021 0.0045 0.0041 5243.23

6 20 x 1 0.00092 0.00094 0.0023 0.0058 0.0045 7453.54

7 25x1 0.00098 0.00097 0.0027 0.0064 0.0056 9145.62

8 30x1 0.001 0.0011 0.003 0.0076 0.0068

9 40x1 0.0015 0.0016 0.0033 0.0081 0.009

10 60x1 0.0015 0.0018 0.009 0.0088 0.0073

11 80 x1 0.002 0.0021 0.019 0.0114 0.0088

12 100 x1 0.0027 0.0029 0.023 0.0155 0.0108

13 150 x1 0.003 0.0037 0.017 0.023 0.0155

14 200 x1 0.0039 0.0041 0.016 0.0284 0.0197

15 300 x1 0.0048 0.0055 0.0226 0.0382 0.0283

16 400 x1 0.008 0.008 0.0301 0.0517 0.0374

17 500 x1 0.01 0.01 0.0395 0.0644 0.047

18 1000

x1

0.0219 0.022 0.0955 0.1274 0.1136

161

The results based on the execution time show that the HeuA has the lowest execution

time while the BB has the highest execution time. However, to ascertain whether the

differences observed between the execution time of all the heuristics are significant,

statistical t-test of paired two-samples for means was carried out, using spreadsheet 2013

data analysis. Tables 5.44-5.46 show the results of the t-tests.

162

Table 5.44: t-test for the execution time for small-sized problems

Solution

method

GAlg HeuIII HeuIV HeuA HeuB BB

GAlg ---- >0.05 >0.05 <0.05* <0.05* <0.05*

HeuIII >0.05 ------ >0.05 <0.05* <0.05* <0.05*

HeuIV >0.05 >0.05 ----- <0.05* <0.05* <0.05*

HeuA <0.05* <0.05* <0.05* ------- <0.05* <0.05*

HeuB <0.05* <0.05* <0.05* <0.05* <0.05* <0.05*

BB <0.05* <0.05* <0.05* <0.05* <0.05* --------

163

Table 5.45: t-test for the execution time for medium-sized problems

Solution

method

GAlg HeuIII HeuIV HeuA HeuB BB

GAlg ---- >0.05 >0.05 <0.05* <0.05* <0.05*

HeuIII >0.05 ------ >0.05 <0.05* <0.05* <0.05*

HeuIV >0.05 >0.05 ----- <0.05* <0.05* <0.05*

HeuA <0.05* <0.05* <0.05* ------ <0.05* <0.05*

HeuB <0.05* <0.05* <0.05* <0.05* ------ <0.05*

BB <0.05* <0.05* <0.05* <0.05* <0.05* -------

164

Table 5.46: t-test for the execution time for large-sized problems

Solution

method

GAlg HeuIII HeuIV HeuA HeuB

GAlg ---- >0.05 >0.05 >0.05 >0.05

HeuIII >0.05 ------ >0.05 >0.05 >0.05

HeuIV >0.05 >0.05 ----- >0.05 >0.05

HeuA >0.05 >0.05 >0.05 >0.05 >0.05

HeuB >0.05 >0.05 >0.05 >0.05 >0.05

Note* indicates significant result , Sample size = 50 ; -----indicates not necessary.

165

The results of the t-tests show that the execution time of the HeuA methods are

significantly better than other solution method.

Moreover, approximation ratio test was also carried out. HEUA was used as the standard

because it has the lowest execution time. Figures 5.10-5.12 show the plots of

approximation ratios for all the implemented solution methods. (See APPENDIX 1,

Table I for the approximation ratio Table).

166

Figure 5.10: The plots of approximation ratio for the small-sized problems

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5 x 1 7x1 8x1 10 x 1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

HeuA HeuB/HeuA HeuIII/HEUA HeuIV/HeuA

167

Figure 5.11: The plots of approximation ratio for the medium-sized problems

0

1

2

3

4

5

6

7

8

15x1 20 x 1 25x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

HEUA HEUB/HEUA HeuII/HEUA GAlg/HEUA HeuIII/HEUA

168

Figure 5.12: The plots of approximation ratio for the large-sized problems

0

1

2

3

4

5

6

7

8

9

10

30x1 40x1 60x1 80 x1 100 x1 150 x1 200 x1 300 x1 400 x1 500 x1 1000 x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

HEUA HEUB/HEUA HeuIII/HEUA GAlg/HEUA HeuIII/HEUA

169

Tables 5.47-5.52 show the overall means of approximation ratio of all the solution

methods for the three problem sizes.

170

Table 5.47: The overall means of approximation ratio for the problems 5≤n ≤ 10

Solution methods Overall means of approximation ratio

BB 4290627.574

HeuIV 4.37

HeuIII 2.51

GAlg 5.06

HeuB 1.18

HeuA 1.00

171

Table 5.48: The overall means of approximation ratio for the problem

(15≤n ≤ 25)

Solution methods Overall means of approximation ratio

HeuIV 5.92

HeuIII 4. 18

GAlg 5.06

HeuB 1.08

HeuA 1.00

172

Table 5.49: The overall means of approximation ratio for the problem ranges,

 30≤n ≤ 1000

Solution methods Overall means of approximation ratio

HeuIV 6.31

HeuIII 3. 83

GAlg 5.00

HeuB 1.02

HeuA 1.00

173

The results based on the mean execution time show that the HeuA is the most efficient

solution method compare to other solution. However, with the exception of BB, no other

solution requires prohibitive execution time. Furthermore, the small values of

approximation ratios for other heuristics for the three problem classes implies that the

effectiveness with respect to the optimal should be given a higher priority in determine

the recommended heuristic for the problem. However, the benefits of exploring the

HeuIII heuristic is greater than that of HEUA. This is because in terms of effectiveness,

the HeuIII heuristic is not significantly different from the optimal, yielded an

approximation ratio of 1 and capable of yielding optimal results in 94% (in 50 problem

instances) for small-sized problems while HEUA is significantly different from optimal,

with A.R of 1.08 and optimal count of 16%. In this regards, for small, medium and large

size problems, the proposed HeuIII is recommended.

5.5 Results Based on the Dynamic Variant of the Bi-criteria Problem

The scheduling problem of minimizing the composite function of total tardiness and

total flowtime of jobs with non-zero release dates was explored as the Class III. This

section presents the results obtained for the problem class.

5.5.1 Simulation results based on effectiveness

The mean values of the normalized total LCOF for the implemented solution methods

for the problem class are shown in Table 5.50.

174

 Table 5.50: Mean of normalized total LCOF by solution methods

 Implemented Heuristics Proposed Heuristics Optimal

Problem sizes GAlg DMDD HeuV HeuVI BB

5 x 1 0.3437 0.2827 0.2360 0.2225 0.1601

7x1 0.3728 0.2453 0.2249 0.2002 0.1675

8x1 0.4011 0.2591 0.2466 0.209 0.1681

10 x 1 0.4325 0.2733 0.2326 0.2067 0.1698

Mean 0.387525 0.2651 0.23503 0.2096 0.1664

15x1 0.5734 0.3366 0.2831 0.2708 0.1786

20 x 1 0.6234 0.3788 0.3511 0.335 0.2624

25x1 0.6605 0.406 0.3843 0.3768 0.2821

Mean 0.6191 0.3738 0.3395 0.32753 0.24103

30x1 0.6762 0.4307 0.4164 0.4073

40x1 0.7121 0.4596 0.453 0.4491

60x1 0.512 0.7406 0.5094 0.5018

80 x1 0.7583 0.5365 0.536 0.5292

100 x1 0.7828 0.5532 0.5494 0.5465

150 x1 0.8011 0.5785 0.5775 0.5725

200 x1 0.8024 0.5886 0.588 0.5855

300 x1 0.8151 0.6019 0.5998 0.5978

400 x1 0.825 0.6054 0.6061 0.6052

500 x1 0.8255 0.6088 0.6094 0.6086

1000 x1 0.837 0.6167 0.6168 0.6167

Mean 0.7589 0.57459 0.55107 0.54729

175

Based on the results obtained, it can be deduced that the two proposed heuristics and the

solution methods from the literature can be ranked in the order; HeuVI, HeuV, DMDD,

GAlg. However, to ascertain whether the differences observed were significant,

statistical t-test for paired two-samples for means were carried out, using the spreadsheet

2013 data analysis. Tables 5.51 -5.53 show the results of test of mean for three problem

ranges.

176

Table 5.51: t-test for the mean value of the total LCOF for small-sized problems

Solution methods GAlg HeuVI HeuV DMDD BB

GAlg ---- <0.05* <0.05* <0.05* <0.05*

HeuV <0.05* <0.05* ------- <0.05* <0.05*

HeuVI <0.05* ------ <0.05* <0.05* <0.05*

DMDD <0.05* <0.05* <0.05* -------- <0.05*

BB <0.05* <0.05* <0.05* <0.05* ---

177

Table 5.52: t-test for the mean value of the total LCOF for medium-sized

problems

Solution methods GAlg HeuV HeuVI DMDD BB

GAlg ---- <0.05* <0.05* <0.05* <0.05*

HeuV <0.05* ------- <0.05* <0.05* <0.05*

HeuVI <0.05* <0.05* ------ <0.05* <0.05*

DMDD <0.05* <0.05* <0.05* -------- <0.05*

BB <0.05* <0.05* <0.05* <0.05* ---

178

Table 5.53: t-test for the mean value of the total LCOF for large-sized problems

Solution

methods
GAlg HeuV

DMDD
HeuVI

GAlg ---- <0.05* <0.05* <0.05*

HeuV <0.05* ------- >0.05 <0.05*

HeuVI <0.05* <0.05* >0.05 ------

DMDD <0.05* >0.05 --------- >0.05

Note:* indicates significant result; Sample size = 50; -----indicates not necessary.

179

Tables 5.51 and 5.52 show that for the small-sized and medium-sized problems, all the

heuristics yielded results that are significantly different from the optimal. For the three

problem sizes, the proposed heuristic; HeuVI yielded results that are significantly better

than other solution methods.

The approximation ratio test was also carried out. The BB results (the optimal solution)

were used for benchmarking for the problem sizes 5 ≤n ≤ 25 (small and medium sized

problems), while the HeuVI results were used for the problem sizes; 30 ≤n ≤ 1000.

Figures 5.13-5.15 show the approximation ratio for the three problem sizes, respectively.

(See Appendix II1, Tables J, K and L for the approximation Table for the three problem

sizes).

180

Figure 5.13: Plots of approximation ratio for problem sizes 5 ≤n ≤ 10

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

5 x 1 7x1 8x1 10 x 1

p
p

ro
xi

m
at

io
n

 R
at

io

Problem size

GAlg/BB DMDD/BB HEUV/BB HEUVI/BB BB

181

Figure 5.14: Plots of approximation ratio for problem sizes 15 ≤n ≤ 25

1

1.5

2

2.5

3

3.5

15x1 20 x 1 25x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

GAlg/BB DMDD/BB HEUV/BB HEUVI/BB BB

182

Figure 5.15: Plots of approximation ratio for problem sizes 30 ≤n ≤ 1000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

30x1 40x1 60x1 80 x1 100 x1 150 x1 200 x1 300 x1 400 x1 500 x1 1000 x1

GAlg/HeuVI DMDD/HeuVI HEUV/HeuVI HEUVI

183

From the results, it can be inferred that for problem sizes, 30 ≤ 𝑛 ≤ 40, the GAlg yielded

the worst result. However, for 30 < 𝑛 < 80, the GAlg performed better than the

DMDD.

Furthermore, Tables 5.54-5.56 show the overall means of approximation ratio of all the

solution methods for the three problem sizes. Table 5.57a shows the results of the

optimal count test for the heuristics. The result of t-test on the optimal count is shown in

Table 5.57b

184

Table 5.54: The overall mean of approximation ratio for the problem sizes; 5 ≤n

≤ 10

Solution method Overall means of approximation ratio

HeuVI 1.26

HeuV 1.41

DMDD 1.60

GAlg 2.33

BB 1.00

185

Table 5.55: The overall mean of approximation ratio for the problem sizes; 10

≤n ≤ 25

Solution method Overall means of approximation ratio

HeuVI 1.38

HeuV 1.43

DMDD 1.60

GAlg 2.64

BB 1.00

186

Table 5.56: The overall mean of approximation ratio for problem sizes;

30 ≤n ≤ 1000

Solution method Overall means of approximation ratio

HeuV 1.006

GAlg 1.37

DMDD 1.05

HeuVI 1.00

187

Table 5.57: The Optimal Count test

S/No Problem Sizes HeuV HeuVI DMDD GAlg

1 5 x 1 14 28 6 0

2 7x1 6 16 4 0

3 8x1 4 12 2 0

4 10 x 1 2 8 2 0

 Mean 6.5 16 3.5 0

 Standard deviation 5.25 7.12 1.91 0

5 15x1 0 0 0 0

6 20 x 1 0 0 0 0

7 25x1 0 0 0 0

188

Table 5.57b : The t-test for the optimal count result

Solution methods GAlg HeuV DMDD HeuVI

GAlg ---- <0.05* <0.05* <0.05*

HeuV <0.05* ------- >0.05 <0.05*

HeuVI <0.05* <0.05* <0.05* ------

DMDD <0.05* >0.05 --------- <0.05*

189

Furthermore, in order to measure the consistency of the solution methods, the number

of time each of the methods yielded the minimum value of the LCOF from the fifty

problem instances were computed and expressed in percentages. This is shown in the

Table 5.58. It can be deduced that the ranking order from the consistency test is in

agreement with the results from the other tests.

190

Table 5.58: The consistency test

S/NO GAlg HeuVI DMDD HeuV Rank

5 x 1 38 78 52 70 HeuVI, HeuV, DMDD, GAlg

7x1 24 74 44 66 HeuVI, HeuV, DMDD, GAlg

8x1 16 60 36 50 HeuVI, HeuV, DMDD, GAlg

10 x 1 12 52 30 44 HeuVI, HeuV, DMDD, GAlg

15x1 0 68 10 62 HeuVI, HeuV, DMDD, GAlg

20 x 1 0 74 5 64 HeuVI, HeuV, DMDD, GAlg

25x1 0 76 0 42 HeuVI, HeuV, DMDD, GAlg

30x1 0 68 0 54 HeuVI, HeuV, DMDD, GAlg

40x1 4 74 14 70 HeuVI, HeuV, DMDD, GAlg

60x1 8 64 10 60 HeuVI, HeuV, DMDD, GAlg

80 x1 0 78 0 70 HeuVI, HeuV, DMDD, GAlg

100 x1 0 70 0 66 HeuVI, HeuV, DMDD, GAlg

150 x1 0 76 0 72 HeuVI, HeuV, DMDD, GAlg

200 x1 0 78 0 74 HeuVI, HeuV, DMDD, GAlg

250 x1 0 80 0 76 HeuVI, HeuV, DMDD, GAlg

300 x1 0 76 0 72 HeuVI, HeuV, DMDD, GAlg

400 x1 0 74 0 70 HeuVI, HeuV, DMDD, GAlg

500 x1 0 80 0 76 HeuVI, HeuV, DMDD, GAlg

1000 x1 0 82 0 78 HeuVI, HeuV, DMDD, GAlg

191

5.5.2 Results based on the mean execution time

The execution time of an algorithm is the time taken to solve an instance of a given

problem by the algorithm. Table 5.59 shows the mean of the total execution time by the

solution methods and the problem sizes.

192

Table 5.59: Mean of the total execution time by solution methods and problem

sizes

 Implemented Proposed

S/N
Problem

Sizes
GAlg

DMDD
HeuV HeuVI BB

1 5 x 1 0.0064 0.00069 0.00021 0.00024 40.34

2 7x1 0.0069 0.00072 0.00026 0.00029 1924

3 8x1 0.0071 0.00072 0.00027 0.00032 3671

4 10 x 1 0.0076 0.00073 0.00029 0.00035 6542.3

5 15x1 0.0081 0.00084 0.00036 0.00049 12789.5

6 20 x 1 0.0093 0.00091 0.00045 0.00064 19876.5

7 25x1 0.0152 0.00095 0.00057 0.00076 30546.3

8 30x1 0.016 0.0010 0.00067 0.0011

9 40x1 0.0237 0.0016 0.00086 0.0081

10 60x1 0.0223 0.00207 0.00089 0.0011

11 80 x1 0.0265 0.00298 0.001 0.0098

12 100 x1 0.0307 0.00372 0.0029 0.0079

13 150 x1 0.0454 0.00498 0.0035 0.0087

14 200 x1 0.0533 0.0067 0.0014 0.0097

15 300 x1 0.0808 0.0772 0.002 0.017

16 400 x1 0.1032 0.0891 0.0028 0.029

17 500 x1 0.1528 0.125 0.0032 0.035

18 1000 x1 0.1943 0.1721 0.0045 0.048

193

Results in the Table 5.59 shows that the HeuVI has the minimum execution time for the

problem sizes considered. However, to ascertain whether the differences observed

between the execution time of the HeuV and other heuristics are significant, t-test was

also carried out. Tables 5.60-5.62 show the results of the t-test.

194

Table 5.60: The t-test for mean execution time for 5 ≤n ≤ 10 problems

Solution method GAlg DMDD HeuV HeuVI BB

GAlg ---- <0.05* <0.05* <0.05* <0.05*

DMDD <0.05* ------ <0.05* <0.05* <0.05*

HeuV <0.05* <0.05* ------- >0.05 <0.05*

HeuVI <0.05* <0.05* >0.05 ------ <0.05*

BB <0.05* <0.05* <0.05* <0.05* -------

195

Table 5.61: The t-test for mean execution time for 10 ≤n ≤ 25 problems

Solution

method

GAlg DMDD HeuV HeuVI BB

GAlg ---- <0.05* <0.05* <0.05* <0.05*

DMDD <0.05* ------ <0.05* <0.05* <0.05*

HeuV <0.05* <0.05* ------- >0.05 <0.05*

HeuVI <0.05* <0.05* >0.05 ------ <0.05*

BB <0.05* <0.05* <0.05* <0.05* --------

196

Table 5.62: The t-test for mean execution time for 30 ≤n ≤ 1000 problems

Solution method GAlg DMDD HeuV HeuVI

GAlg ---- <0.05* <0.05* <0.05*

DMDD <0.05* ------ <0.05* <0.05*

HeuV <0.05* <0.05* ------- >0.05

HeuVI <0.05* <0.05* >0.05 ------

Note: *indicates significant result; Sample size = 50; -----indicates not necessary

197

The results show that the execution time of the heuristics are significantly different from

each other (p < 0.05) except the HeuV and HeuVI. The execution time of HeuV and

HeuVI are not significantly different from each other (p > 0.05).

Furthermore, the approximation ratio test was also carried out. The HeuV was used as

the standard because it has the lowest execution time. Figures 5.16-5.18 show the plots

of approximation ratio of the methods (See Appendix 1, Table H for the approximation

Table). Furthermore, Tables 5.63-5.65 show the overall approximation ratio of the

solution methods with respect to the HeuV.

198

Figure 5.16: Plots of approximation ratio for problem sizes 5 ≤n ≤ 10

0

5

10

15

20

25

30

35

5 x 1 7x1 8x1 10 x 1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

GAlg/HeuV DMDD/HeuV1 HeuV HeuVI/HeuV

199

Figure 5.17: Plots of approximation ratio for problem sizes 15 ≤n ≤ 25

0

5

10

15

20

25

30

15x1 20 x 1 25x1

A
p

p
ro

xi
m

at
io

n
 r

at
io

Problem size

GAlg/HeuV DMDD/HeuV HeuV HeuVI/HeuV

200

Figure 5.18: Plots of approximation ratio for problem sizes 30 ≤n ≤ 1000

0

10

20

30

40

50

60

30x1 40x1 60x1 80 x1 100 x1 150 x1 200 x1 300 x1 400 x1 500 x1 1000 x1

A
p

p
ro

xi
u

m
at

io
n

 r
at

io

Problem size

GAlg/HeuV DMDD/HeuV HeuV HeuVI/HeuV

201

Table 5.63: The overall mean of approximation ratio for the problem sizes; 5 ≤n

≤ 10

Solution Method Overall means of approximation ratio

BB 1.1 x 107

HEUVI 1.16

DMDD 2.84

GAlg 27.38

HEUV 1.00

202

Table 5.64: The overall mean of approximation ratio for the problem sizes; 15 ≤n

≤ 25

Solution method Overall means of approximation ratio

BB 4.4 x 107

HEUVI 1.37

DMDD 2.01

GAlg 23.28

HEUV 1.00

203

Table 5.65: The overall mean of approximation ratio for the problem sizes; 30 ≤n

≤ 1000

Solution method Overall means of approximation ratio

HeuVI 6.79

DMDD 14..90

GAlg 30.26

HeuV 1.00

204

The results based on the mean execution time show that the proposed heuristic, HeuV is

the most efficient solution method compare to other solution methods. For the three

problems sizes, HeuVI is the closest to the standard efficient solution (HeuV). Therefore,

comparing the effectiveness and efficiency of the two proposed HeuVI and HeuV, it can

be inferred that HeuVI should be selected in preference to the HeuV solution method.

5.5.3 Real life results based on the dynamic variant of the bicriteria Problem

The implemented solution methods for the Class III problem as well as the scheduling

policy (FCFS) employed by the firm for jobs received on different dates were applied

on the real life data collected from the firm. The objective was to minimise the composite

function of total tardiness and total flowtime. The results of the total normalized

composite function obtained by all the solution methods are shown in Table 5.66.

205

Table 5.66: The mean of normalized total LCOF real life problem

Problem

Size

Sample size HEUVI HEUV

DMDD GAlg FCFS

5x1

20 0.1076 0.1306

0.1461 0.1539 0.1308

10x1

5 0.2619 0.2936

0.3879 0.4930 0.3299

15x1

5 0.3682 0.4251

0.5243 0.5671 0.4876

206

In order to advise the firm on the best scheduling policy that suit its environments, the

gain or loss from the use of any other scheduling policies compared to the FCFS were

computed. These are shown in Tables 5.67 – 5.70.

207

Table 5.67: Average gain or loss by adopting the HeuV policy

Problem sizes Sample size HEUV FCFS Difference Remark

5x1 20 0.1308 0.1310 +0.0002 Gain

10x1 5 0.2936 0.3299 +0.0363 Gain

15x1 5 0.4251 0.4876 +0.0625 Gain

208

Table 5.68: Average gain or loss by adopting the HeuVI policy

Problem sizes Sample size HeuVI FCFS Difference Remark

5x1 20 0.1076 0.1310 +0.0234 Gain

10x1 5 0.2619 0.3299 +0.068 Gain

15x1 5 0.3862 0.4876 +0.1014 Gain

209

Table 5.69: Average gain or loss by adopting the GAlg policy

Problem

sizes

Sample

size GAlg FCFS Difference Remark

5x1 20 0.1539 0.1310 -0.0229 Loss

10x1 5 0.4930 0.3299 -0.1631 Loss

15x1 5 0.5671 0.4876 -0.0795 Loss

210

Table 5.70: Average gain or loss by adopting the DMDD policy

Problem sizes

Sample

size DMDD FCFS Difference Remark

5x1 20 0.1461 0.1310 -0.0153 Loss

10x1 5 0.3879 0.3299 -0.058 Loss

15x1 5 0.5243 0.4876 -0.0367 Loss

211

However, since the objectives were normalized, the normalized average gains or losses

were converted to percentage in order to make the best decision with regard to the

preferred scheduling policy. The percentage gains or losses by adopting a new policy

are shown in Tables 5.71-5.74.

212

Table 5.71: Percentage average gain or loss by adopting the HEUVpolicy

Problem

sizes Sample size HEUV FCFS %gain (time) Remark

5x1 20 0.1308 0.1310 +0.16% Gain

10x1 5 0.2936 0.3299 +0.12% Gain

15x1 5 0.4251 0.4876 +0.15% Gain

213

Table 5.72: Percentage Average gain or loss by adopting the HeuVI policy

Problem sizes Sample size HeuVI FCFS %gain (time) Remark

5x1 20 0.1076 0.1310 +22% Gain

10x1 5 0.2619 0.3299 +26% Gain

15x1 5 0.3862 0.4876 +68% Gain

Mean of Percentage gain by adopting the HeuVI policy 39%

Standard deviation of Percentage gain by adopting the HEUVI policy ±25.4%

214

Table 5.73: Percentage gain or loss by adopting the GAlg policy

Problem Size Sample size GAlg FCFS % loss(time) Remark

5 x 1 20 0.1461 0.1308 -17% Loss

10x1 5 0.3879 0.3299 -49% Loss

15x1 5 0.5243 0.4876 -16% Loss

215

Table 5.74: Percentage average gain or loss by adopting the DMDD policy

Problem sizes Sample size DMDD FCFS % loss Remark

5x1 20 0.1461 0.1308 -11.7% Loss

10x1 5 0.3879 0.3299 -17.5% Loss

15x1 5 0.5243 0.4876 -7.5% Loss

216

Results obtained from Table 5.71 implied that by adopting the HeuV over the existing

FCFS policy, the firm would experience positive changes (gain) in performance, which

is expressed as the percentage change in time.

The results in Table 5.72 show that by adopting the HeuVI scheduling policy over the

existing FCFS policy, the firm would experience a marked positive change (gain) in

performance, which is expressed as the percentage change in time. The expected

percentage gains in adopting the HeuVI policy was found to be far better than that of the

HeuV policy. Thus, the HeuVI scheduling policy is recommended over the HEUV

policy and the existing FCFS policy. Table 5.73 shows that by adopting the GAlg

scheduling policy over the existing FCFS policy, the firm would experience a marked

loss in their effectiveness. Table 5.74 shows that by adopting the DMDD scheduling

policy over the existing FCFS policy, the firm would also experience a marked loss of

effectiveness. Therefore, HeuVI scheduling policy is recommended for the firm for jobs

with different release dates.

217

CHAPTER SIX

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

This chapter highlights the summary of this work, the contribution of the study to

knowledge and its benefits to the industrial policy. Conclusions were drawn based on

the results obtained in this study and recommendations for future research are also

outlined.

6.2 Summary

This study proposed some heuristics for scheduling problems with total tardiness related

objectives. Based on the number of objectives and the subjected constraints, the

problems solved were grouped into three classes:

CLASS 1: A scheduling problem of minimizing the 2TRD,

CLASS II: A bi-criteria scheduling problem of minimizing the 3TFZRD, and

CLASS III: A bi-criteria scheduling problem of minimizing the 3TFRD.

Six heuristics; HEUI, HEUII, HEUIII, HEUIV, HEUV and HEUVI were proposed. The

HEUI and HEUII were proposed for the 2TRD problem and compared to the DMDD

and the SPT from the literature. For the 3TFZRD problem, the HEUIII and HEUIV were

compared to the HEUA and HEUB from the literature. The GAlg for solving

multicriteria scheduling problems was also implemented for the problem. Due to the

complexity status of the 3TFRD scheduling problem, algorithm were sparse that solves

the problem. Nevertheless, the DMDD as well as the Generalized Algorithm (GAlg)

were implemented for the problem and compared to the HEUV and HEUVI proposed

for the problem. The BB was implemented for the problems for benchmarking. Fifty

instances each for problem sizes ranging from 5-1000 jobs were randomly generated for

evaluation, using MATLAB. Due to the prohibitive execution time, the BB was explored

for problem sizes not exceeding twenty-five jobs. Statistically, a sample is referred to as

218

large sample size if the sample size does not fall below 30 (n≥30). Exploring this fact,

the simulated problems were grouped into the small-sized problems (5≤n≤10), medium-

sized problems (15≤n≤25), and large-sized problems (30≤n≤1000).

Some real life problems involving 5, 10 and 15 jobs were also explored. For the 3TFZRD

and 3TFRD bicriteria problems, the two objectives were expressed as the composite

function and normalized. For the 3TFZRD problem, the existing normalization

procedure in the literature was explored while a new procedure was proposed for the

static scheduling constraints and applying to the 3TFZRD problem. The proposed

corollary states that in order to determine the extreme values of a scheduling criterion

for which a known optimal schedule or solution exists, the schedules corresponding to

the two extreme values are notional. The corollary is based on the fact that for single

processor scheduling problems, optimal or near-optimal solutions exist for some single

criteria scheduling problems with zero release dates. The mean objective function and

the mean execution time for all the implemented heuristics for each problem class were

subjected to the Optimal Count (O.C), t-test (p<0.05), approximation Ratio (A.R) tests

and consistency test to measure the effectiveness and efficiency of the heuristics for

proper ranking.

Experimental results as well as the real life results show that the HEUII is recommended

for small-and-medium sized problems, while the HEUI heuristic is recommended for the

large-sized problems for 2TRD problem. For the 3TFZRD problem, the HEUIII is

recommended for the small, medium and large sized problems. HEUVI is also

recommended for the 3TFRD problem.

6.3 Contribution to Knowledge

Exploring scheduling approaches to minimise total tardiness related objectives in a

single processor environment are NP hard problems with numerous application to

industrial practices. Thus, the problem is of interest to researchers and industrialists. This

work has contributed to the state of knowledge by proposing an effective and efficient

scheduling heuristics for solving 2TRD problem. The heuristic (HEUII) yielded the

results that are not significantly different from the optimal for small and medium sized

problems (n ≤ 25).

219

Similarly, two effective and efficient heuristics for the bicriteria scheduling problem of

minimizing 3TFZRD were also proposed. In terms of effectiveness, the two proposed

heuristics are not significantly different with respect to the optimal for number of jobs

not exceeding twenty five jobs. Also the proposed heuristics are statistically better than

the heuristics found in the literature. For small-sized problems, one of the proposed

heuristics (HEUIII) yielded an optimal count of 90% on the average.

The need for normalization of objectives in multicriteria scheduling problems and the

required procedure for non-zero release dates constraint has been established in the

literature. However, the normalization procedure for multicriteria scheduling problems

under static condition is a missing link. This work fills the gap.

Customer satisfaction as well as efficient resources utilization is a challenge in

production and servicing firms. This study shows that there will be a significant boost

in the effectiveness without compromising the efficiency of a firm exploring the first

come first serve schedule policy, if the proposed policy in this work is adopted. This was

reflected in the percentage gain observed when the utility of the proposed heuristics with

real life data was demonstrated for the 3TFRD. Furthermore, for some firms like

shipping firms, auto repair firm, auto painting firms, etc, where numerous jobs are

available simultaneously for processing, there will be a significant boost in performance,

if the proposed policies were explored compared to the SPT. This was reflected in the

percentage gain observed when the utility of the proposed heuristics with real life data

was demonstrated for the 3TFZRD.

6.4 Future Research and Recommendation

Although the solution methods proposed in this work yielded good results. Further

research can be carried out by imposing other constraints on all the problem classes.

Also, more solution methods can be explored, especially for the Class II and Class III

problems.

6.5 Conclusion

Based on the results obtained, it was concluded that for the problem of minimizing the

2TRD, the heuristic HEUII is recommended if the number of job does not exceed 25.

This is because the method produced a result (in terms of effectiveness) that is not

220

significantly different from the optimal for small problem sizes. Though, the method

requires a significantly different execution time from the most efficient method (SPT),

the HEUII heuristic is polynomially-time bound. However, if the number of

accumulated jobs is greater than twenty-five (25), the heuristic HEUI is recommended.

This is because the method yielded the most effective results compared to other

heuristics. For the bicriteria scheduling problem of minimizing 3TFZRD, the heuristics;

HEUIII is recommended. This is because the solution method yielded results that are not

significantly different from the optimal for small sized problems (n ≤ 25) and also

produced an optimal of 90% on the average. Also, the method obtains a polynomial-

time bound. For the bicriteria scheduling problem of minimizing 3TFZRD, the HEUVI

heuristic is recommended. Though the model yields results that are significantly

different from the optimal. The approximation ratio tests for the small and medium sized

problems show that the method is effective in solving the problem. In terms of

effectiveness, the method is also significantly better than other solution method.

221

REFERENCES

Anderson, E. J. and Nyirenda, J. C. 1990. Two new rules to minimise tardiness

in a job shop. International Journal of Production Research 28: 2277–2292.

Ali, M.D. 2016. Approximation algorithms to solve simultaneous multicriteria

scheduling problems. International Journal of Application or Innovation in

Engineering & Management 5.1: 1- 6.

Abdullah, H. F. 2010. Multicriteria scheduling problems to minimise total

tardiness subject to maximum earliness or tardiness. Ibn Al- Haitham Journal

for Pure and Applied Science 23.1: 1- 6.

Akande, S., Oluleye, A.E., and Oyetunji E.O. 2014. Reducibility of some multi

criteria scheduling problems to bi-criteria scheduling problems. Proceedings of

the 2014 International Conference on Industrial Engineering and Operations

Management. Indonesia. 642-651.

Akande, S., Oluleye, A.E., and Oyetunji, E.O. 2015. On the reducibility of some

multi criteria scheduling problems to bi-criteria scheduling problems.

International Conference on Industrial Engineering and Operations

Management. Dubai. 1-8.

Akande, S., Oluleye, A.E., and Oyetunji, E.O. 2015. Normalization of composite

objective function for multicriteria scheduling problems with zero release dates.

Proceedings of the 2015 International Conference on the Challenge of

Productivity and National Development, Nigeria Institute of Industrial

Engineers. Nigeria. 115-128.

Al-harkan, I. Algorithms for Sequencing and Scheduling. [online]

Available from: faculty.ksu.edu.sablog

(http://http://faculty.ksu.edu.sa/ialharkan/IE428) [Accessed: May, 21st 2013].

Akinyemi, O.O., Oluleye, A.E. and Akinbinu, A.F. 2002. Job scheduling against

due dates using a single algebraic sequencing rule: A Case Study of an Electrical

Repair Workshop. Nigerian Journal of Engineering Management 3.4: 1-6.

http://faculty.ksu.edu.sa/ialharkan/IE428

222

Bao, Z., Wang, W., Wang, P., and Quanke, P. 2012. Research on production

scheduling system with bottleneck based on multi-agent. 2012 International

Conference on Applied Physics and Industrial Engineering, Netherland. 27-37.

Bansal, N. and Kulkarni, J. 2015. Minimizing flow-time on unrelated machines.

Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing. Portland. 92-102.

Bianchi, L., Marco, D., Luca, M.G., and Walter, J. G. 2009. A survey on

metaheuristics for stochastic combinatorial optimization. Natural Computing:

an International Journal 8.2: 239–287.

Blum, C. and Roli, A. 2003. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys 35.3: 268–308.

Brucker, P. 2007. Scheduling Algorithms, 5th ed. Springer: Heidelberg

Publisher.

Brian D. H and Daniel T. V. 2007. Essential MATLAB for Engineers and

Scientists. 3rd ed. Amsterdam : Butterworth-Heinemann.

Baptiste P., Carlier J. And Jouglet A 2004. A branch and bound procedure for

minimizing total tardiness with arbitrary release date. European Journal of

Operational Research 15.8: 595–608.

Branke, J. Belton, V., Eskelinen, P., Greco, S., Molina, J., Ruiz, F. and

Slowinski, R. 2008. Multi objective Optimization: Interactive and Evolutionary

Approaches. 1st ed. Verlag Berlin Heidelberg : Springer

Bean, J.C. and Hall, D.H. 1985. Accuracy of the Modified Due Date Rule,

Technical Report 85-10, Department of Industrial and Production Engineering,

Michigan University. 1-7.

Baker, K.R. and Bertrand, J.W. 1982. A dynamic priority rule for scheduling

against due-dates. Journal of Operational Management 3.1: 37-42.

223

Baker, K.R and Trietsch, D. 2013. Principles of sequencing and scheduling. Ist

ed. Canada: John Wiley & Sons

Cox, J.F., Blackstone, J.H., and Spencer, M.S. 1992. APICS Dictionary,

American Production and Inventory Control Society 1st ed. Virginia: Falls

Church.

Chu, C. and Portmann, M.C. 1992. Some new efficient methods to solve the

1/ri/ ∑ Ti
n
i=1 (min) scheduling problem. European Journal of Operational

Research 58: 404–413.

Cochran, J.K., Shwu, H. and Fowler, J.W. 2003. A multi-population genetic

algorithm to solve multi-objective scheduling problems for parallel machines.

Computers and Operations Research 30.7: 1087– 1102.

Della Croce F., Tsouki, A., and Moraıtis, P. [online] Why is difficult to make

decisions under multiple criteria

Available from: www.math-info.univ-paris5.fr

 [Accessed: April16th, 2016].

Chu, C. 1992. A Branch-And-Bound algorithm to minimise total flow time with

unequal release dates. Naval Research Logistics 39: 859–875.

Du, J. and Leung, Y.T. 1990. Minimizing total tardiness on one machine is NP-

Hard. Mathematics of Operations Research 15.3: 483–495.

Deb, K., 2001. Multi-Objective optimization using evolutionary algorithms. 1st

Ed. Canada : John Wiley.

Ehrgott, M., and Gandibleux, X., 2000. A Survey and Annotated Bibliography

of Multi Objective Combinatorial Optimization. Operation Research Spectrum.

22: 425–460.

Erenay, F.S., Sabuncuoglu, I., Toptal, A. and Tiwari, M.K. 2010. New solution

methods for single machine bi-criteria scheduling problem: minimization of

average flow time and number of tardy jobs. European Journal of Operation

Research 201.1: 89 – 98.

224

Eren T. 2007. A multi-criteria scheduling with sequence-dependent setup times.

Applied Mathematical Sciences 1.58: 2883 – 2894.

Weisstein, E W. Complexity Theory. A Wolfram Web Resource.

http://mathworld.wolfram.com/ComplexityTheory.html [Accessed: June, 21st

2015].

French, S. 1982. Sequencing and Scheduling, 1st Ed. Ellis USA : Horwood

Limited

Farhad, K., and Vahid, K. 2009. A heuristic approach for scheduling of multi-

criteria unrelated parallel processors. World Academy of Science, Engineering

and Technology 59: 253-261

Fera, M., Fruggiero, F., Lambiase, A., Martino, G., and Nenni, M.E., 2015.

Production Scheduling Approaches for Operations management. [online]

 (http://creativecommons.org/licenses/by/3.0), [Accessed: December 21st 2015].

Gantt, H. 1916. Industrial Leadership New Haven. Ist Ed. USA: Yale University

Press

Ghosh D. S. and Nagi, R. 2007. Batch splitting in an assembly scheduling

environment. International Journal of Production Economics, 105.2: 372-384.

Gürsel, A., Yang, S. X., Alhawari, O. I., Santos, J., and Vazquez, R. 2012. A

genetic algorithm approach for minimizing total tardiness in single machine

scheduling. International Journal of Industrial Engineering and Management

3.3: 163-171

Haidar, Y.K. and Tariq, S.A. 2011. Single machine scheduling to minimise

three hierarchically criteria. Journal of Basrah Research Sciences 37.4: 263-

271.

Heidi, A. And David, W. 2006. Multiple Objective Scheduling Problems:

Determination of Pruned Pareto Sets, Technical Report. Department Of

Industrial and Systems Engineering, Rutgers University, 76-85.

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/ComplexityTheory.html

225

Hoogeveen, H. 2005. Multi Criteria scheduling. European Journal of

Operational Research 167: 592-623.

Ilhem, B., Julien, L. and Patrick, S. 2013. A survey on optimization

metaheuristics. Journal of Information Sciences 23.7: 82–117.

Jeffrey, W. H. 2008. A history of production scheduling. International Series in

Operations Research and Management Science 1-22.

Kanet, J.J. and Hayya, J.C. 1982. Priority dispatching with operation due-dates

in a job shop. Journal of Operations Management 2: 155–163.

Kaplanoglu, V. 2014. Multi-Agent based approach for single machine

scheduling with sequence-dependent setup times and machine maintenance.

Journal of Applied Soft Computing 23: 165-179.

Karger, D.R., Phillips S.J., and Torng, E. 1996. A better algorithm for an ancient

scheduling problem. Journal of Algorithms 20:400–430.

M’Hallah, R. 2007. Minimizing total earliness and tardiness on single machine

using hybrid heuristic. Computers and Operations Research 34: 3126–3142.

Miyazaki, S.1981. Combined scheduling system for reducing job tardiness in a

job shop. International Journal of Production Research 19: 201–211.

Michael, W., Michael, V. H., Ralf, H., Joachim, M. and Eberhard, A. 2015. Real

time bottleneck detection and prediction to prioritize fault repair in interlinked

production lines. Procedia CIRP. Understanding the life cycle implications of

manufacturing. 37: 140 – 145.

Muhlemann, A.P., Lockett, A. G., and. Farn, C. I. 1982. Job shop scheduling

heuristics and frequency of scheduling. International Journal of Production

Research 20: 227–241.

Nagar A, Haddock J., and Heragu S., 1995. Multiple and bicriteria scheduling: a

literature survey. European Journal of Operational Research 81.1: 88-104.

http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255/237/supp/C

226

Naidu J.T. 2003. A Note on a Well-Known Dispatching Rule to Minimise Total

Tardiness. International Journal of Management Science 31.2 : 137–140.

Neda, K. and Hamid D. 2015. A branch and bound method for solving multi-

factory supply chain scheduling with batch delivery. Journal of Expert Systems

with Applications 42.1: 238-245.

Oyawale, F. A. 2006. Statistical methods: An introduction.1st ed. Nigeria :

International Publisher Ltd.

Oyetunji, E. O., Oluleye, A. E. and Akande, S.A. 2012. Approximation

algorithms for minimizing sum of flow time on single machine with release

dates. International Journal of Modern Engineering Research 2.3: 687-696.

Oyetunji, E.O., 2009. Some common performance measures in scheduling

problems. Research Journal of Applied Science, Engineering and Technology

1.2: 6-9.

Oyetunji, E.O. and Oluleye, A.E. 2008. Heuristics for minimizing the total

completion time and number of tardy jobs simultaneously on single machine

with release time. Research Journal of Applied Sciences 3.2: 147–152.

Oyetunji, E.O. and Oluleye, A.E. 2009. Evaluating solution methods to bicriteria

scheduling problems. Advanced Materials Research 62.64: 577–584.

Oyetunji, E.O. and Oluleye, A.E. 2010. Hierarchical minimization of total

completion time and number of tardy jobs criteria. Asian Journal of Information

Technology 7.4: 157-161.

Oyetunji, E.O. 2011. Assessing solution methods to mixed multi-objectives

scheduling problems. International Journal of Industrial and Systems

Engineering 9.2: 213-226.

Oyetunji, E.O. and Oluleye, A.E. 2012. A Generalized Algorithm for solving

multicriteria scheduling problems. Advanced Materials Research 36.7: 653-666.

http://www.sciencedirect.com/science/journal/03050483/31/2

227

Oladokun, V.O., Charles-Owaba O.E, and Olaosebikan F.O. 2011. A bi-criteria

algorithm for the simultaneous minimization of makespan and number of tardy

jobs on single machine with sequence dependent set-up time. Research Journal

of Applied Science, Engineering and Technology 3.9: 1048-1051.

Panneerselvam, R., 2007. Design and Analysis of Algorithm.1st ed. India :

Prentice Hall Limited.

Parviz, F., 2009. A hybrid multi objective algorithm for flexible job shop

scheduling. World Academy of Science, Engineering and Technology 50: 551-

556

Papadimitriou, C.H., 1994. Computational Complexity. 1st ed. New York :

Addison-Wesley.

Pinedo, M.L., 2008. Scheduling – Theory, Algorithms and Systems.1st ed. New

York : Springer

Potts C.N., and Van Wassenhove, L.N. 1982. A decomposition algorithm for the

single-machine total tardiness problem. Operations Research Letters 1: 177–181

Phillips, C., Stein, C., and Wein, J. 1998. Minimizing average completion time

in the presence of release dates. Mathematical Programming 82: 199–224.

Rajendran, C., 1995. Theory and methodology of heuristics for scheduling in

flow shop with multiple objectives. European Journal of Operation Research

82: 540 −555.

Rahimi V. R. and Mirghorbani S. M. 2007. A multi-objective particle swarm for

flow shop scheduling problem. Combinatorial Optimization 13.1:79–102

Roscoe, E.S., and Freark, D.G., 1971. Organization for Production. 5th ed.

Illinois: Irwin, Inc.

Sipser, M., 1997. Introduction to the Theory of Computation. 1st ed. California:

Belmont.

228

Skinner, W., 1985. The Taming of The Lions: how manufacturing leadership

evolved. 2nd ed. Boston : Harvard Business School Press.

Sen, T. and Dillepan, O.1999. Bicriteria scheduling problems involving total

tardiness and total flow time. Journal of Information and Optimization Science

20.2: 155-170.

Smith, W. E., 1956. Various Optimisers for single-stage production. Naval

Research Logistic Quarter 3.1: 59-66.

Tapan P. B., (2012). Multiobjective Scheduling by Genetic Algorithms. 1st

edition, USA: Springer Science & Business Media.

Tabucanon, M. T. and Cenna, A. A. 1991. Bicriteria scheduling problem in a job

shop with parallel processor. International Journal of Production Economics

25.3:95-101.

Taha, H. 2007. Operation Research; An Introduction. 8th Ed. USA: Pearson

Prentice Hall.

T’Kindt, V. and Billiant, J.C. 2005. Multicriteria scheduling, theory, model and

algorithm. 2nd ed. USA: Mc Graw Hill.

Ulungu, E.L., Teghem, J., Fortemps, P. H., and Tuyttens, D., 1999. MOSA

Method: A tool for solving problems. Journal of Multi-Criteria Decision

Analysis 8: 221–236.

Van Wassenhove, L. N. and Gelders, F. 1980. Solving a bicriteria scheduling

problem. European Journal of Operational Research 4.1: 42-48.

Vladimír, M.R. and Sudhakara, P., 2010. Flow shop scheduling algorithm to

minimise completion time for n-jobs m-machines problem. Technical Gazette

17.3: 273-278.

Yang, H., Sun, S., and Wang, S. 2006. A heuristic algorithm for dynamic

identify bottleneck machine. Manufacturing Automation 9: 21-24.

https://www.google.com.ng/search?tbo=p&tbm=bks&q=inauthor:%22Tapan+P.+Bagchi%22

229

APPENDICES

230

APPENDIX A1 : Validity of the Normalization Procedure

This example will justify the need for normalization as well as the validity of the

proposed corollary. Consider a single machine, 4 jobs bicriteria scheduling problem for

minimizing the total flowtime and the total number of tardy jobs. The processing time

and the due date of each jobs as shown in Table A.

231

 Table A: Hypothetical problem to illustrate the need for normalization

Job P (hour) D(hour)

1 3.0 5

2 5.5 4

3 3.5 6

4 7.0 10

232

SPT algorithm yields optimal solution for the total flow time only. In this work, SPT

schedule is 1, 3, 2, 4. The schedule can be represented by chant chart as shown in Figure

A

233

Figure A1: The Gantt chart of the SPT schedule.

3 5.5 3.5 7.0

3.0 6.

5
12 19

1 3 2 4

0

234

The optimal total flowtime produced by SPT = 3.0 + 6.5 + 12 + 19 = 40.5hour

The total number of tardy jobs produced by SPT = 3jobs

Assuming the two criteria have equal weight of 0.5.

Without normalization, the composite objective function is given by;

F(X,Y) = 𝛼 X + 𝛽 Y = 0.5(40.5) hour + 0.5(3)jobs

 20.25hours + 1.5job = 21.75 (hour +job)

Therefore, this is an unbalanced LCOF since the unit of flow time and number of tardy

jobs are not the same. Similarly, the SPT does not yield a good result for total tardiness

problem. However, this becomes insignificant in the LCOF because flow time objective

dominates over that of the number of tardy jobs. Thus the LCOF is biased or skewed

towards the flow time.

With normalization

Argument against the corollary

SPT algorithm yields optimal solution for the total flow time only. In this work, SPT

schedule is 1, 3, 2, 4. The schedule can be represented by chant chart as shown in Figure

A2

235

Figure A2. The Gantt chart of the SPT schedule.

3 5.5 3.5 7.0

3.0 6.5 12 19

1 3 2 4

0

236

The optimal total flowtime produced by SPT = 3.0 + 6.5 + 12 + 19 = 40.5hour

The minimum possible total flow time, 𝐹𝑘 = 𝑃1 + {∑ 𝑃𝑖 + ∑ 𝑃𝑖
𝑛
𝑖=2

𝑘−1
𝑖=1 }

= 3.0 + (3 + 3.5) + (3 + 3.5 + 5.5) + (3 + 3.5 + 5.5 + 7.0) = 40.5ℎ𝑜𝑢𝑟

The maximum possible total flow time = 𝑃1 + ∑ {∑ 𝑃𝑖 + 𝑃𝑘
𝑘−1
𝑖=1 }𝑛

𝑘=2

= 3.0 + ((3.0 + 3.5) + (3.0 + 3.5 + 5.5) + (3.0 + 3.5 + 5.5 + 7.0)

3.0 + 6.5 + 12 + 19 = 40.5 hours

The normalized value of flow time is given by;

 𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 =

40.5−40.5

40.5−40.5
 =

0ℎ𝑜𝑢𝑟𝑠

0ℎ𝑜𝑢𝑟𝑠
 = indeterminate

Argument in favour of the corollary

The minimum possible total flowtime, 𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝑃𝑖

𝑛
1 = 3.0 + 3.5 + 5.5 + 7.0 = 19

The maximum possible total flowtime = 𝑛{∑ 𝑃𝑖
𝑛−1
𝑖=1 } + ∑ 𝑃𝑖

𝑛
𝑖=1

4(3 + 3.5 + 5.5) + (3 + 3.5 + 5.5 + 7.0) = 4(12) + 19 = 48 + 19

= 67ℎ𝑜𝑢𝑟𝑠

The normalized value of flow time is given by;

 𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 =

40.5−19

67−19
 =

21.5ℎ𝑜𝑢𝑟𝑠

48ℎ𝑜𝑢𝑟𝑠
 = 0.4479

The total number of tardy jobs produced by SPT = 3

The minimum possible number of tardy jobs = 0

The maximum possible number of tardy jobs = number of jobs= 4

The normalized value of total number of tardy jobs is given by;

 𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 =

3−0

4−0
 =

3𝑗𝑜𝑏𝑠

4𝑗𝑜𝑏𝑠
 = 0.75

The composite objective function;

F(X,Y) = 𝛼 X + 𝛽 Y = (0.5) 0.4479 + (0.5) 0.75 = 0. 4515

This is a balanced LCOF since both the flow time and the number of tardy jobs have

been converted to a dimensionless parameter by normalization. Similarly, none of the

objectives dominates the other. The high value of the normalized total number of tardy

jobs observed is due to the fact that SPT does not produce a good result for scheduling

237

problems to minimise the number of tardy jobs. Similarly, the lower value of

normalized flow time observed is due to the fact that SPT yields the optimal for flow

time single machine scheduling problem with zero release dates. Thus, a balanced and

unbiased composite objective function is obtained by normalization.

238

APPENDIX AII: Code Listing : Pseudocode of the scheduling problem

generation for SPTTP with release dates problems (CLASS I)

Code Written by : Saheed Akande

Language : MATrix LABoratory

Date : June 2016

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE

PROCESSOR SCHEDULING PROBLEMS WITH

TARDINESS- RELATED PERFORMANCE MEASURES

Department : Industrial and Production Engineering

MinProcessTime = 1;
MaxProcessTime = 10;
ProcessTimeGen = 9;
MaxReleaseDate = 40;
MinReleaseDate =0;
nojobs = 5;
rowc = 5;
wtime = zeros(rowc, nojobs);
ProcessTime = zeros(rowc, nojobs);
ReleaseDate = zeros(rowc, nojobs);
DueDate = zeros(rowc, nojobs);
MaxProcessTimeDDC = zeros(rowc, nojobs);
MinProcessTimeDDC = zeros(rowc, nojobs);
ProcessTimeDDCGen = zeros(rowc, nojobs);
Jobs = zeros(rowc, nojobs);

for row = 1:rowc

 Jobs(row, :) = 1:nojobs;
 ProcessTime(row, :) = floor(ProcessTimeGen *rand([1, nojobs]))+1;

 ReleaseDate(row, :) = floor(MaxReleaseDate *rand([1,nojobs]));

 MaxProcessTimeDDC(row, :) = 4*ProcessTime(row, :);

 MinProcessTimeDDC(row, :) = 1* ProcessTime(row, :);

 ProcessTimeDDCGen(row, :) = MaxProcessTimeDDC(row, :) –

MinProcessTimeDDC(row, :) ;

 DueDate(row, :) = (ReleaseDate(row, :)) +

(floor(ProcessTimeDDCGen(row, :).*rand([1,nojobs]))+

1*MinProcessTimeDDC(row, :));

end

save('problemG.mat','Jobs', 'ProcessTime', 'ReleaseDate', 'DueDate')

239

APPENDIX AII: Code Listing : Pseudocode of the single instance solution for

Heu IIfor SPTTP with release dates problems (CLASS I)

Code Written by : Saheed Akande

Language : MATrix LABoratory

Date : June 2016

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE

PROCESSOR SCHEDULING PROBLEMS WITH

TARDINESS- RELATED PERFORMANCE MEASURES

Department : Industrial and Production Engineering

function [execTime, sumtard, order] =

AA6Instance(processTime,releaseDate, dueDate)
% execTime is the time to run an instant of problem
% lcof is the linear composite objective function of an instant of

problem
% order is the final schedule of an instant of problem
%

tic

noJobs = length(processTime); % n = number of jobs = length of array

processTime
 %or releaseDate or dueDate

 FactorTime = dueDate;

 FactorTime1 = processTime + releaseDate;

 [SortedFactorTime,JobSetB] = sort(FactorTime);

 [SortedFactorTime1,JobSetC] = sort(FactorTime1);

 CompletionTimeJobSetB = zeros(1, noJobs);

 for k = 1

 CompletionTimeJobSetB(1) = processTime(JobSetB(1)) +

releaseDate(JobSetB(1));

 end

 for k = 2:noJobs

 if CompletionTimeJobSetB(k-1)> releaseDate(JobSetB(k))

 CompletionTimeJobSetB(k) = CompletionTimeJobSetB(k-1) +

processTime(JobSetB(k));

240

 else
 CompletionTimeJobSetB(k) = releaseDate(JobSetB(k))+

processTime(JobSetB(k));
 end
 end

 TardinessJobSetB = zeros(1, noJobs);

 for k =1:noJobs

 if CompletionTimeJobSetB(k)> dueDate(JobSetB(k))

 TardinessJobSetB(k) = CompletionTimeJobSetB(k) -

dueDate(JobSetB(k));

 end
 end

 SumTardJobSetB = sum(TardinessJobSetB);

 CompletionTimeJobSetC = zeros(1, noJobs);

 for k = 1

 CompletionTimeJobSetC(1) = processTime(JobSetC(1))+

releaseDate(JobSetC(1));

 end

 for k = 2:noJobs

 if CompletionTimeJobSetC(k-1) > releaseDate(JobSetC(k))

 CompletionTimeJobSetC(k) = CompletionTimeJobSetC(k-1)

+ processTime(JobSetC(k));

 else

 CompletionTimeJobSetC(k) = releaseDate(JobSetC(k)) +

processTime(JobSetC(k));

 end

 end

 TardinessJobSetC = zeros(1, noJobs);

 for k =1:noJobs

 if CompletionTimeJobSetC(k)> dueDate(JobSetC(k))

 TardinessJobSetC(k) = CompletionTimeJobSetC(k) -

dueDate(JobSetC(k));

 end
 end

241

 SumTardJobSetC = sum(TardinessJobSetC);

 OptSeq = zeros(1, noJobs);

 for k = 1 : noJobs

 if TardinessJobSetB(k) - TardinessJobSetC(k) <= 0

 OptSeq(k) = JobSetB(k);

 else

 OptSeq(k) = JobSetC(k);
 end

 end

 N = OptSeq;

 JobSetU = RTW.unique(OptSeq);

 L = length(JobSetU);

 NoRepJobs = noJobs - L;

 [JobNotSch1, indexINB] = setdiff(JobSetB, OptSeq);

 [JobNotSch2, indexINC] = setdiff(JobSetC, OptSeq);

 FOptSeq = [JobSetU,JobNotSch2];

 CompletionTimeFOptSeq = zeros(1, noJobs);

 for k = 1

 CompletionTimeFOptSeq(1) = processTime(FOptSeq(1))+

releaseDate(FOptSeq(1)) ;

 end

 for k = 2:noJobs

 if CompletionTimeFOptSeq(k-1)> releaseDate(FOptSeq(k-1))

 CompletionTimeFOptSeq(k) = CompletionTimeFOptSeq(k-1) +

processTime(FOptSeq(k));
 else

 CompletionTimeFOptSeq(k) = processTime(FOptSeq(k))+

releaseDate(FOptSeq(k)) ;
 end
 end

242

 TardinessFOptSeq = zeros(1, noJobs);

 for k =1:noJobs

 if CompletionTimeFOptSeq(k)> dueDate(FOptSeq(k));

 TardinessFOptSeq(k) = CompletionTimeFOptSeq(k) -

dueDate(FOptSeq(k));
 end
 end

 if sum(TardinessJobSetC) > sum(TardinessFOptSeq)

 sumtard = sum(TardinessFOptSeq);

 execTime = toc;

 order = FOptSeq;

 else

 sumtard = sum(TardinessJobSetC) ;

 execTime = toc;

 order = JobSetC;
 end

end

243

APPENDIX AII: Code Listing : Pseudocode of the Execution file for HeuII for

SPTTP with release dates problems (CLASS I)

Code Written by : Saheed Akande

Language : MATrix LABoratory

Date : June 2016

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE

PROCESSOR SCHEDULING PROBLEMS WITH

TARDINESS- RELATED PERFORMANCE MEASURES

Department : Industrial and Production Engineering

function [meanSUMTARD,meanExecTime,SUMTARD,ORDER] =

ExecuteAA6(ProcessTime,ReleaseDate, DueDate, Algo)

 [noProbs, noJobs] = size(ProcessTime);
 EXECTIME = zeros(noProbs, 1);
 SUMTARD = zeros(noProbs, 1);
 ORDER = zeros(noProbs, noJobs);

 for probs = 1: noProbs

 processTime = ProcessTime(probs,:);
 dueDate = DueDate(probs,:);
 releaseDate = ReleaseDate(probs,:);

 [execTime, sumtard, order] = Algo(processTime,releaseDate,

dueDate);

 EXECTIME(probs) = execTime;
 SUMTARD(probs) = sumtard;
 ORDER(probs,:) = order;

 end

 meanSUMTARD = mean(SUMTARD);
 meanExecTime = mean(EXECTIME);

244

APPENDIX AII: Code Listing : Pseudocode of the Run Problem for HeuII for

SPTTP with release dates problems (CLASS I)

Code Written by : Saheed Akande

Language : MATrix LABoratory

Date : June 2016

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE

PROCESSOR SCHEDULING PROBLEMS WITH

TARDINESS- RELATED PERFORMANCE MEASURES

Department : Industrial and Production Engineering

clear all;

load('problemG.mat','Jobs', 'ProcessTime', 'ReleaseDate', 'DueDate');

Algo = @AA6Instance;

[meanSUMTARD, meanExecTime, SUMTARD, ORDER] =

ExecuteAA6(ProcessTime,ReleaseDate,DueDate, Algo);

245

 APPENDIX AII: Code Listing : Pseudocode of the scheduling problem

generation for static problems (CLASS II)

Code Written by : Saheed Akande

Language : MATrix LABoratory

Date : June 2016

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE

PROCESSOR SCHEDULING PROBLEMS WITH

TARDINESS- RELATED PERFORMANCE MEASURES

Department : Industrial and Production Engineering

 MinProcessTime = 1;
MaxProcessTime = 10;
ProcessTimeGen = 9;
nojobs = 200;
rowc = 50;
wtime = zeros(rowc, nojobs);
ProcessTime = zeros(rowc, nojobs);
ReleaseDate = zeros(rowc, nojobs);
MaxDueDate = zeros(rowc, nojobs);
MinDueDate = zeros(rowc, nojobs);
DueDateGen = zeros(rowc, nojobs);
DueDate = zeros(rowc, nojobs);
Jobs = zeros(rowc, nojobs);

for row = 1:rowc

 Jobs(row, :) = 1:nojobs;

 ProcessTime(row, :) = floor(ProcessTimeGen *rand([1, nojobs]))+1;

 MaxDueDate(row, :) = 4*ProcessTime(row, :);

 MinDueDate(row, :) = 1* ProcessTime(row, :);

 DueDateGen(row, :) = MaxDueDate(row, :) - MinDueDate(row, :);

 DueDate(row, :) = (floor(DueDateGen(row, :).*rand([1,nojobs]))+

1*MinDueDate(row, :));

end

save('problemR.mat', 'Jobs' ,'ProcessTime', 'ReleaseDate', 'DueDate')

246

APPENDIX A111: Tables of Approximation Ratio:

The approximation ratio Tables for the three problem classes solved and the problem

sizes in each case were given in Tables B –M

247

Table B: The approximation ratio for the small-sized problem of Class 1

S/No Problem Sizes HEUI HEUII DMDD SPT BB

1 5 x 1 16.62 3.69 10.85 147.77 1

2 7x1 2.51 1.197 3.04 15.98 1

3 8x1 1.42 1.17 1.7 10.99 1

4 10 x 1 1.57 1.35 2.08 8.13 1

248

Table C: The approximation ratio for the medium-sized problems for Class 1

S/No Problem Sizes HEUI HEUII DMDD SPT BB

3 15x1 1.78 1.73 1.99 4.85 1

4 20 x 1 1.43 1.38 1.43 2.55 1

5 25x1 1.56 1.54 1.57 2.39 1

249

Table D: The approximation ratio for the large –sized problems (30 ≤ n ≤ 1000)

for Class 1

S/No Problem Sizes HEUI HEUII DMDD SPT

6 30x1 1.00 1.17 1.1 1.53

7 40x1 1.00 1.06 1.02 1.22

8 60x1 1.00 1.11 1.07 1.12

9 80 x1 1.00 1.1 1.06 1.05

10 100 x1 1.00 1.15 1.11 1.06

11 150 x1 1.00 1.17 1.13 1.03

12 200 x1 1.00 1.18 1.15 1.01

13 300 x1 1.00 1.19 1.16 1.01

14 400 x1 1.00 1.22 1.18 1

15 500 x1 1.00 1.22 1.18 1

16 1000 x1 1.00 1.24 1.2 1

250

Table E: The approximation ratio of execution time for Class 1 problem sizes 5 ≤

n ≤ 1000.

S/No Problem Sizes HEUI HEUII DMDD SPT BB

1 5 x 1 3.13 3.23 3.44 1.00 1476923

2 7x1 3.05 3.2 3.35 1.00 4810000

3 8x1 3.1 3.25 3.35 1.00 7800000

4 10 x 1 3.23 3.32 3.47 1.00 1.5E+07

5 15x1 3.38 3.43 3.82 1.00 2.2E+07

6 20 x 1 3.07 3.31 3.72 1.00 3.8E+07

7 25x1 2.76 2.83 3.52 1.00

8 30x1 2.66 2.84 3.51 1.00

9 40x1 2.71 2.71 5.09 1.00

10 60x1 2.66 2.72 6.28 1.00

11 80 x1 2.48 2.54 7.89 1.00

12 100 x1 24.66 24.93 97.05 1.00

13 150 x1 0.24 0.24 1.21 1.00

14 200 x1 2.89 2.91 13.83 1.00

15 300 x1 0.91 0.91 99.16 1.00

16 400 x1 1.12 1.13 138.29 1.00

17 500 x1 11.21 1.12 129.06 1.00

18 1000 x1 9.99 10.1 148.26 1.00

251

Table F: The approximation ratio for Class II problem sizes 5≤n≤ 10

S/N Problem sizes GAlg HEUA HEUB HEUIII HEUIV BB

1 5x1 1.05 1.03 2.01 1.00 1.11 1.00

2 7x1 1.04 1.04 1.86 1.00 1.03 1.00

3 8x1 1.03 1.06 1.81 1.00 1.04 1.00

4 10x1 1.00 1.05 1.70 1.00 1.01 1.00

252

Table G: The approximation ratio for medium-sized problems 15≤n≤ 25 (Class II)

S/N
Problem

sizes
GAlg HEUA HEUB HEUIII HEUIV BB

5 15x1 1.00 1.07 1.70 1.00 1.00 1.00

6 20x1 1.00 1.07 1.66 1.00 1.00 1.00

7 25x1 1.00 1.07 1.69 1.00 1.00 1.00

253

Table H: The approximation ratio for large-sized problems (30≤n≤ 1000)

S/N Problem sizes GAlg HEUA HEUB HEUIV HEUIII

6 30x1 1.03 1.06 1.68 1.02 1.00

7 40x1 1.04 1.07 1.66 1.01 1.00

 8 60x1 1.00 1.07 1.69 1.02 1.00

 9 80 x1 1.10 1.07 1.69 1.02 1.00

 10 100 x1 1.00 1.07 1.68 1.00 1.00

 11 150 x1 1.00 1.07 1.68 1.2 1.00

 12 200 x1 1.00 1.07 1.69 1.00 1.00

 13 300 x1 1.21 1.07 1.68 1.04 1.00

 14 400 x1 1.00 1.08 1.68 1.02 1.00

 15 500 x1 1.03 1.07 1.68 1.00 1.00

 16 1000 x1 1.00 1.08 1.70 1.03 1.00

254

Table I: The approximation ratio of execution time for Class 1I problem sizes

S/N Problem Sizes GAlg HEUB HEUA Heu III HeuIV BB

1 5 x 1 5.54 1.25 1 2.46 3.33 3069444

2 7x1 5.29 1.19 1 2.57 4.29 4303029

3 8x1 5.14 1.15 1 2.5 4.4 4465903

4 10 x 1 5.13 1.12 1 2.52 4.12 4084847

5 15x1 4.71 1.03 1 2.41 5 5825811

6 20 x 1 4.89 1.02 1 2.5 6.17 7929298

7 25x1 5.71 0.99 1 2.76 6.59 9428474

8 30x1 6.8 1.1 1 3 6.91

9 40x1 6 0.9 1 2.2 6.75

10 60x1 4.87 1.2 1 3 4.89

11 80 x1 4.4 0.95 1 4.5 6

12 100 x1 4 0.92 1 4.41 6.2

13 150 x1 5.17 1.23 1 5.6 6.22

14 200 x1 4.8 1 1 3.9 6.93

15 300 x1 4.42 0.89 1 3.53 6.95

16 400 x1 4.62 1 1 3.72 6.38

17 500 x1 4.7 1 1 3.95 6.44

18 1000 x1 5.19 1 1 4.36 5.79

255

Table J: The approximation ratio for small-sized problem (5≤n≤ 10) of Class III

Problem Size GAlg DMDD HEUV HEUVI BB

5 x 1 2.15 1.77 1.47 1.39 1.00

7x1 2.23 1.46 1.34 1.2 1.00

8x1 2.38 1.54 1.47 1.24 1.00

10 x 1 2.55 1.61 1.37 1.22 1.00

256

Table K: The approximation ratio for Class III problem sizes 15≤n≤ 25

Problem sizes GAlg DMDD HEUV HEUVI BB

15x1 3.21 1.88 1.59 1.52 1.00

20 x 1 2.38 1.44 1.34 1.28 1.00

25x1 2.34 1.44 1.36 1.36 1.00

257

Table L: The approximation ratio for large-sized problems (30≤n≤ 1000) for

Class III.

Problem Sizes GAlg DMDD HEUV HEUVI

30x1 1.65 1.04 1.03 1.00

40x1 1.59 1.02 1.01 1.00

60x1 1.02 1.48 1.02 1.00

80 x1 1.43 1.01 1.01 1.00

100 x1 1.43 1.01 1.01 1.00

150 x1 1.4 1.01 1.01 1.00

200 x1 1.37 1.01 1.00 1.00

300 x1 1.36 1.01 1.00 1.00

400 x1 1.36 1.00 1.00 1.00

500 x1 1.36 1.00 1.00 1.00

1000 x1 1.36 1.00 1.00 1.00

258

Table M: The approximation ratio for Class III problem sizes 5≤n≤ 1000 (for

efficiency)

Problem Sizes GAlg DMDD HEUV HEUVI BB

5 x 1 30.48 3.29 1.00 1.14 192095

7x1 26.54 2.77 1.00 1.12 7400000

8x1 26.29 2.67 1.00 1.19 13596296

10 x 1 26.21 2.52 1.00 1.21 2.3E7

15x1 22.5 2.33 1.00 1.36 3.6E7

20 x 1 20.67 2.02 1.00 1.42 4.4E7

25x1 26.67 1.67 1.00 1.33 5.4E7

30x1 23.88 1.49 1.00 1.64

40x1 27.56 1.86 1.00 9.42

60x1 25.06 2.33 1.00 1.24

80 x1 26.5 2.98 1.00 9.8

100 x1 10.59 1.28 1.00 2.72

150 x1 12.97 1.42 1.00 2.49

200 x1 38.07 4.79 1.00 6.93

300 x1 40.4 38.6 1.00 8.5

400 x1 36.86 31.82 1.00 10.36

500 x1 47.75 39.06 1.00 10.93

1000 x1 43.18 38.24 1.00 10.67

