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ABSTRACT 

Scheduling problems involve the processing of jobs on processor(s) subject to 

constraints to optimise performance measures. Determining schedules that minimise 

tardiness-related performance measures for single processor scheduling problems is 

complex. Optimal-solutions require prohibitive-time, therefore heuristics are explored 

in real-life but effectiveness of existing heuristics is inadequate. The objective of this 

study was to develop effective heuristics for minimizing tardiness-related performance 

measures for single processor scheduling problems. 

 

Six heuristics were developed and compared to the existing heuristics for minimizing 

the Total-Tardiness of jobs with Release-Dates (2TRD), Total-Tardiness and Total-

Flowtime of jobs with Zero-Release-Dates (3TFZRD) and Total-Tardiness and Total-

Flowtime of jobs with Release-Dates (3TFRD). HeuristicI (HeuI) and HeuristicII 

(HeuII) developed for 2TRD problem were compared to Dynamic Modified Due Date 

(DMDD). For 3TFZRD problem, heuristicIII (HeuIII) and heuristicIV (HeuIV) 

developed were compared to heuristicA (HeuA). Generalised Algorithm (GAlg) was 

compared to heuristicV (HeuV) and heuristicVI (HeuVI) developed for 3TFRD. HeuI 

and HeuII schedule jobs to reduce lateness. HeuIII and HeuIV reduce waiting-time. 

HeuV and HeuIV reduce idle-time and waiting-time. Fifty instances each, for problem-

sizes (n) from small-sized (5≤n≤10), medium-sized (10<n<30), and large-sized 

(30≤n≤1000) randomly generated and industry-based problems involving 5, 10 and 15 

jobs were solved in editor module in MATLAB environment. The Branch and Bound 

(BB) optimal method was used to solve small-and medium-sized problems. For 

3TFZRD and 3TFRD problems, a composite-function was formulated and normalised. 

The Approximation Ratio (AR) test evaluated the heuristics’ effectiveness, significant 

differences were analysed using t-test at 𝛼0.05. 

 

The small-sized problems objective-function were: BB (9.26±9.12), HeuI 

(16.32±17.38), HeuII (12.03±10.02), DMDD (20.02±15.21) for 2TRD; BB 

(0.3059±0.0190), HeuIII (0.3059±0.0190), HeuIV (0.3192±0.0010), HeuA 

(0.3191±0.0200) for 3TFZRD; BB (0.1664±0.0043), HeuV (0.2350±0.0090), HeuVI 

(0.2096±0.0094), GAlg (0.3875±0.0380) for 3TFRD.  HeuII, HeuIII and HeuVI yielded 

the AR of 1.85±1.22, 1.00±0.00 and 1.26±0.09 compared to DMDD (4.42±4.33), HeuA 
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(1.05±0.013) and GAlg (2.33±0.176), respectively. The medium-sized problems 

objective-function were: BB (287.11±138.54), HeuI (442.15±197.36), HeuII 

(432.48±137.86), DMDD (449.03±135.54) for 2TRD; BB (0.3397±0.0047), HeuIII 

(0.3398±0.0201), HeuIV (0.3403±0.0204), HeuA (0.3629±0.0239) for 3TFZRD; BB 

(0.2410±0.0550), HeuV (0.3395±0.0520), HeuVI (0.3275±0.0530), GAlg 

(0.6191±0.0440) for 3TFRD. Considering the small-and-medium-sized problems, HeuII 

and HeuIII were not significantly different from the optimal. The large-sized problems 

objective-function were: HeuI (254,046±8215), HeuII (311,184±11,643), DMDD 

(303,044±8642) for 2TRD; HeuIII (0.3492±0.0024), HeuIV (0.3493±0.0024), HeuA 

(0.3736 ±0.0029) for 3TFZRD; HeuV (0.5511±0.0670), HeuVI (0.5473±0.0690), GAlg 

(0.7589±0.0960) for 3TFRD. Therefore, regarding 2TRD problem, HeuII was 

recommended when solving small-and-medium-sized problems and HeuI for large-

sized. Considering 3TFZRD and 3TFRD problems, HeuIII and HeuVI were respectively 

recommended for all the problem sizes. With respect to the industry-based problems, 

HeuII, HeuIII and HeuVI were (44.3±36.9%), (182.7±113.8%) and (39.0±25.4%), 

respectively better than firm policies; First-Come-First-Served for 2TRD and 3TFZRD, 

Shortest-Processing-Time for 3TFRD. 

 

The developed heuristics minimised tardiness-related performance measures for single 

processor scheduling problems and were more effective compared to the existing ones.   

  

Keywords: Single Processor Scheduling, Heuristic, Effectiveness, Total-Tardiness,   

                    Total-Flowtime  
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CHAPTER ONE 

INTRODUCTION 

1.1   The Scheduling Problem 

A scheduling problem involves the processing of job sets on processor(s) subject to 

constraints to optimise performance measure(s). Examples of performance measures are 

total tardiness, total flowtime, makespan, completion time, number of tardy jobs, among 

others. The processing of a job on a processor is called an operation (French, 1982). The 

goal is to determine a schedule that specifies the time a given job is to be executed 

(Karger et al., 1999). Generally, the vital elements of scheduling are jobs, processors, 

performance measures and constraints (Pinedo, 2008). Scheduling deals with the 

sequencing and time tabling of jobs. Sequencing is the order in which a set of jobs are 

to be processed on a number of processors. The determination of the start time and the 

finish time of jobs is called the time tabling (French, 1982; Oyetunji and Oluleye, 2008). 

Sequencing and time tabling are, therefore, regarded as the subsets of scheduling.   

 

Scheduling is a short-term execution plan of a production planning model. Production 

scheduling consists of the activities performed in manufacturing and servicing firms in 

order to manage and control the execution of production processes. A schedule is an 

assignment problem that describes in details (in terms of time unit) which activities to 

be performed and how the resources should be utilized to satisfy the plan (Fera et al., 

2015). 

 

1.2   Representation of Scheduling Problem 

Scheduling problems can be represented by three parameters notation given by ∶   𝛼|𝛽|𝛾   

(Brucker, 2006). 

where: 

 α is the processor environments like single, multiple, parallel processors etc, 

 β is the job characteristics or constraints like pre-emption, release dates, due dates etc,  

𝛾 is the performance measures like flowtime, makespan,  tardiness, among other. 
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1.2.1 Processor environment  

The processor environment is characterized by a string of two parameters;  𝛼 = 𝛼1𝛼2  

(Brucker, 2006). Possible values of 𝛼1 are ◦, P, Q, R, PMPM, QMPM, G, X, O, J, F.   

If α1 ∈ {◦, P,Q, R, PMPM,QMPM},  where ◦ denotes the empty symbol (thus, α = α2 if 

α1 = ◦), then each job, Ji consists of a single operation. 

If α1 = ◦, each job must be processed on a specified dedicated machine. 

If α1 ∈ {P, Q, R}, it is called parallel machine. In this environment, there are n jobs Ji 

(𝑖 = 1,2,3, … , 𝑛) that have to be processed on m machines Mi, (𝑖 = 1,2,3, … , 𝑚) such 

that each machines can process at most one job at a time and that each job can be 

processed on one machine at a time. Parallel machine environment can be classifield 

into identical parallel machine, uniform parallel machine and unrelated parallel machine.    

a. Identical parallel machines (𝛼1= P): These are multiprocessors system in which 

all the processors are identical, in the sense that they have the same computing 

power. In other word,  for the processing time 𝑃𝑖𝑗  of job Ji on machine Mj we 

have 𝑝𝑖𝑗  = 𝑝𝑖 for all machines 𝑀𝐽. That is 𝑃𝑖1  =  𝑃𝑖2  =   𝑃𝑖3 = ⋯  = 𝑃𝑛𝑚.  

b. Uniform parallel machines (𝛼1= Q) : A uniform parallel machine is a natural 

generalization of identical machines in which the machines run at different 

speeds but do so uniformly, that is they differ by some constant speed factors.  

Thus, for each machine i there is a speed factor 𝑆𝑖, and 𝑝𝑖𝑗  =  𝑝𝑖/𝑆𝑖, where 𝑝𝑖 is 

the inherent processing requirement of job j.   

c. Unrelated Parallel machines(𝛼1= R): In unrelated parallel machines, the 

processing time of jobs j1 varies between the machines in a completely arbitrary 

fashion. The processing time of each job on any of the machines is different and 

bears no relation with each other. Though there is no relationship between 

machines speed in an unrelated parallel machine, there may exist hierarchy 

between the machines. Thus, the machines can be ranked from the highest to the 

lowest speed.  

 

If α1 = PMPM and α1 = QMPM, it is called multi-purpose machines with identical and 

uniform speeds, respectively. In a multi-purpose parallel machine scheduling problem, 

a job can be processed by any machine of an associated, pre specified subset of the 



3 
 

machine set. Thus, these problems generalize classical parallel machine problems in 

which a job can be processed by each machine of the machine set. 

 

 If α1 ∈ {G,X,O, J, F}, it is called a multi-operation model, i.e. associated with each job 

Ji, there is a set of operations Oi1, . . .,Oi,ni. The machines are dedicated, i.e. all μij are 

one element sets. Furthermore, there are precedence relations between arbitrary 

operations.  This model is called a general shop. The general shop is indicated by setting 

α1 = G. A scheduling problem is said to be a general job shop, if there are no restrictions 

upon the form of technological constraint and each job has its own processing order and 

bears no restriction on the processing order of any other jobs (French, 1982, Al-harkan 

2008). For a general job shop problem, the number of possible sequences are (𝑛!)𝑚, 

where n is the number of jobs and m is the number of machines.  

 

Job shops (α1 = J), flow shops (α1 = F), open shops (α1 = O), and mixed shops (α1 = X) 

are special cases of the general shop. The job shop scheduling problem consists of n 

jobs, which require processing on at least m different machines. Each job has its own 

process sequence. Furthermore, the process sequences of the jobs are different from one 

another. The open shop scheduling problem consists of n jobs which are to be scheduled 

on m different machines. There is no process sequence for each job, which means that 

the operations of that job can be performed in any order.   

 

The flowshop scheduling problem is one with several machines available in the shop. 

The characteristic of this type of shop is that the jobs processed in it use machines in the 

same order: they all have the same processing routing. There are n machines and m jobs. 

Each job contains exactly n operations. The ith operation of a job must be executed on 

the ith machine. No machine can perform more than one operation simultaneously. For 

each operation of each job, execution time is specified. Operations within one job must 

be performed in the specified order. The first operation gets executed on the first 

machine, then (as the first operation is finished) the second operation on the second 

machine, and so until the n-th operation.  

 

Furthermore, α2 can either be a positive integer or 0.  If α2 is a positive integer (1, 

2,….m),  it denotes the number of machines.  If α2 = k, then k is an arbitrary, but fixed 

number of machines. If the number of machines is arbitrary, set α2 = ◦. 
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1.2.2 Job environment  

The job characteristics are specified by a set of parameters (𝛽), which contain at most 

six elements;  𝛽1, 𝛽2 , 𝛽3, 𝛽4, 𝛽5, 𝑎𝑛𝑑 𝛽6 (Brucker, 2006).  

 

𝛽1 describes the job pre-emption. Pre-emption of a job or an operation means that the 

processing of a specific task of job may be interrupted and resumed or repeated at a later 

time, even on another processor. A job or an operation may be interrupted several times. 

If pre-emption is allowed, set 𝛽1 = preemption, otherwise 𝛽1 does not appear. 𝛽2 

describes the precedence relations between jobs. Precedence constraints between jobs 

implies that a given job must be processed before another specified job. If there is no 

precedence constraint, 𝛽2 does not appear. 𝛽3 describes the release date (𝑟𝑖) for each job. 

The release date of a job is the time the job is available in the shop. It is a variable and 

varies from zero to any operation time. The dynamic shop is one where jobs arrive 

intermittently (𝑟1≠0), while the static shop is one where all the jobs are available at the 

same time (𝑟1=0) for processing. For a static shop, 𝛽3 does not appear. 𝛽4 specifies the 

restrictions on the processing time or on the number of operations. The processing time 

of a job is the time the job spends on the processor(s).  𝛽5  specifies the due date (𝑑𝑖) for 

each job. The due date of a job is the date the job is expected to be completed.  𝛽6 

specifies a batch or partition problem. There are two types of partition problems; the 

parallel batching (P-batch) problems and the serial batching (S-batch) problems (Ghosh 

and Nagi, 2007).  

 

For the P-batch problems, all the jobs of a batch are processed in parallel and the length 

of the batch is equal to the maximum of the processing times of all the jobs in the batch 

plus the set up time. For the S-batch problems, all the jobs of a batch are processed 

sequentially and the length of a batch is equal to the sum of the processing times of all 

jobs in the batch plus the set up time. 𝛽6 indicates either the P-batch or the S-batch 

problem. If there are no batches, 𝛽6 does not appear. 

 

1.2.3    Performance measures 

Performance measures are criteria by which the performance of any solution method can 

be assessed. Performance measures are also called performance objectives or scheduling 

criteria. It is not easy to state the performance measure of a scheduling problem (French, 
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1982). This is because they are numerous, complex and often conflicting. However, 

solving a scheduling problem involves finding a schedule that optimises a given 

performance measure. French (1982), Al-harkan (2010), classified performance 

objectives based on: 

i. Completion time:  Examples of criteria based on completion time are the total 

completion time, average completion time, makespan. 

ii. Effective resources utilization: These include the total flowtime, maximum 

flowtime, average flow time, among others 

iii. Due date: The main criteria in this category are the total earliness, total 

tardiness, maximum lateness, total lateness, average lateness, among others. 

 

Performance objectives are formulated by mathematical expressions. French (1982), 

Oyetunji (2009) and Al-harkan (2010) stated some mathematical expressions used to 

compute scheduling objectives. Some of the criteria are described as follows: 

i. The Makespan (𝐶𝑚𝑎𝑥): This is the completion time of the last job in a 

schedule or the maximum completion time. A common scheduling problem 

is to minimise the makespan. The criterion is used to measure the level of 

utilization of the processor. The maximum completion time is given by:  

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝐶1, 𝐶2 , 𝐶3 … , 𝐶𝑛)  

ii. The total flowtime (𝐹𝑡𝑜𝑡): The flowtime is the difference between the 

completion time and the release date. Total flowtime is the sum of the 

flowtime of all the jobs. Scheduling criteria based on the total flowtime is 

given by :  

(𝐹𝑡𝑜𝑡) = ∑ Fi
𝑛
𝑖=1  = ∑ (Ci

𝑛

𝑖=1
𝑟𝑖)  = 𝐹1  +  𝐹2  +  𝐹3 + ⋯ + 𝐹𝑛           

A common problem is to minimise the total flowtime. This is because 

flowtime is proportional to the resources utilization.  

iii. The Total Tardiness: A job is said to be late or tardy, if it is completed after 

its due date. Tardiness is similar to lateness except that it carries only positive 

values. Whenever a job completes before its due dates, its lateness is negative 

and its tardiness is zero.  

Total tardiness (𝑇𝑡𝑜𝑡) is given by: 𝑇𝑡𝑜𝑡: ∑ 𝑇𝑖
𝑛
𝑖=1  = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)}  𝑛

𝑖=1  

A common problem is to minimise the total tardiness.    
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iv. The Total Earliness: The earliness is also a due date related performance 

measure but reflects early delivery of jobs. Total earliness is defined as the 

summation of earliness of individual jobs.  

Total earliness (Etot) = ∑ Ei
𝑛
𝑖=1  = ∑ (di

𝑛

𝑖=1
Ci) 

A common scheduling problem is to find a schedule that maximises the total 

earliness. Earliness is the opposite of lateness; hence, whenever lateness is 

negative, earliness is positive and vice versa. 

 

1.3   Classification of Scheduling Problems 

Scheduling problems are usually represented by  three parameters; the processors, the 

performance objectives and the constraints. Thus, scheduling problems are classified 

based on the:  

i. Number of processors, 

ii. Number of performance objectives involved, and 

iii. Constraints involved. 

 

1.3.1 Scheduling problems based on the number of processors 

Based on the number of processors, scheduling problems can be classified into single 

processor and multi-processors problems. A single processor scheduling problem is one 

in which there is only one processor for all the jobs. Some common examples are:  

i. Aircraft queuing up to land in airport with only one runway: This is an n job, 

one processor problem. Assuming the number of aircraft arriving in a day is 

known, the aircraft are the jobs and the runway is the processor. 

ii. Vehicles queuing for spraying and drying in a booth or baker. 

iii. An auto repair shop with one working pit lift. 

iv. The processing of jobs through a small non-time-sharing computer. 

v. A paint manufacturing plant in which the whole plant is devoted to make a 

colour of paint at a time. 

vi. Patients waiting to see a single specialist doctor.  

vii. A unit means of transportation of a logistic or a shipping firm 

 

A multi-processors scheduling problem is one in which there are several processors 

available upon which jobs may be executed. Some common examples are 
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i. An hospital with many doctors in the same area of specialization that can 

attend to patients 

ii. A bank with many front desk officers or cashiers performing the same duties. 

iii. A petrol station with many attendants selling to customers on queue.  

 

A single processor scheduling problems can also exist in a multi-processors system, 

where bottleneck occurs. A bottleneck is a point of congestion in a system that occurs 

when the jobs inflow at a point exceed the jobs outflow at that point. A bottleneck creates 

queue and elongates the overall cycle time. Bottleneck exists in various systems from 

computer networking to factory assembly lines. For an example, the shipping 

department of a company may constitute a bottleneck, if the purchasing orders exceeded 

the distribution rate to the customer. The painting section of an auto repair firm may also 

constitute a bottleneck, if the total work inflow (output from other subsections like 

mechanical, electrical and body section) transferred to the painting section is high, 

compared to the work outflow at the section. 

 

1.3.2 Scheduling problems based on the number of performance objectives 

Based on the number of performance objectives involved, scheduling problems can be 

classified into: 

i. Single criterion scheduling problems: These are problems in which only one 

performance objective is to be optimised.  

ii. Multi-criteria scheduling problems: These are problems in which two or 

more performance objectives are to be optimised. The simplest form of multi-

criteria scheduling problems is called the bi-criteria problem (M’Hallah, 

2007). Bi-criteria problems are those in which only two performance 

objectives are to be optimised.  

 

1.3.3 Scheduling problems based on the applied constraint 

Two types of constraints are commonly found in scheduling problems: the processor 

capacity constraints and the technological constraints (Baker and Trietsch, 2013). 

Processor capacity constraints deal with the number and the arrangement of processors. 

Single processor, multiple processors, uniform parallel processors, identical parallel 

processors, unrelated parallel processors, among others, are common examples of 
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processor capacity constraints. Technological constraints deal with the restriction on the 

sequencing of the jobs (Al-harkan, 2010). Examples include the static system, dynamic 

system, deterministic system, stochastic system, precedence constraints, among others.  

The static system is one in which the set of jobs available for scheduling does not change 

over time. This implies that all the jobs have equal or effectively zero release dates. In 

contrast to static systems, scheduling problems in which new jobs appear over time is 

called the dynamic system. This implies that the jobs have non-zero release dates. 

Scheduling of jobs on single processor in manufacturing systems is complex, especially 

when the order of jobs arrival is dynamic (Kaplanoglu, 2014). 

 

Static models have been studied more extensively than dynamic models because they 

require less computational time, though dynamic models offer a wider application. 

However, static models often capture the essence of dynamic systems, and the analysis 

of a static problem uncovers valuable insights and sound heuristic principles that are 

useful in solving the corresponding dynamic situation (Baker and Trietsch, 2013). 

Furthermore, when the conditions of a scheduling problem are known with certainty, the 

model is called deterministic while a problem with an explicit probability distribution is 

called stochastic (Pinedo, 2008). 

 

1.4  Effectiveness and Efficiency 

The effectiveness and efficiency are the two parameters considered in selecting solution 

methods for a scheduling problem. The effectiveness of an algorithm is a measure of 

closeness of the value of the objective function of the algorithm to the optimal or existing 

standard. The efficiency is a measure of computation or execution time required by the 

algorithm to solve an instance of problem. Based on the effectiveness and efficiency of 

an algorithms; solution methods can be classified into: 

i. Exact Algorithm: These are solution methods that yield optimal result in terms 

of effectiveness and require a polynomial-time bound computation time 

(efficient). The limitation of these methods is that they are applied to a specific 

problem. Example include the Shortest Processing Time (SPT) rule for solving 

the scheduling problem of minimizing total flowtime with zero release dates. 

ii. Enumeration solution methods: These are solution methods that yield optimal 

solution in terms of effectiveness but require prohibitive execution time, 
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especially for large-sized problems. These include the complete enumeration 

and implicit enumeration methods (the Dynamic programing method, the 

branch and bound). The methods can be applied to different classes of 

optimization problem but with very limited problem sizes due to time 

complexity. 

iii. Approximation solution methods: These are solution methods that yield 

approximate solutions in terms of effectiveness within a small computation 

time. These methods can be explored to solve all classes of optimization 

problems. Examples are heuristics and metaheuristics. In selecting an 

approximation solution methods to be explored for a given NP-hard problem 

among a set of polynomial time bound algorithms, effectiveness is given higher 

priority than efficiency.  For an instance, in a minimization problem, if the 

value of the mean objective function and execution time of the two polynomial 

bound algorithms AA and DD were found to be AA(14, 0.004minutes) and  

DD(12, 0.04minutes), then the DD method would be selected in preference to 

the AA method. Though, the AA is 10 times faster than the DD to achieve the 

result while the DD is 1.2 times more effective than the AA.  

 

1.5   Importance of Tardiness and Tardiness Related Objectives 

Effective scheduling of jobs to optimise the required performance measure(s) is very 

important in   manufacturing, production and servicing systems. This work presents 

solution methods for minimizing a due date based performance measure (the total 

tardiness) and an efficient resources utilization measure (the total flowtime). The static 

and the dynamic release dates constraints are considered. The importance of minimizing 

the tardiness related objectives to production and servicing firms include: 

i. The present industrial environment is characterized by competition. Therefore, 

customer satisfaction in terms of quality, cost and delivery time is a pre-requisite 

for survival. A good quality control system will ensure that the product quality 

conform to the established standard. The products cost and prompt service 

delivery are partly influenced by the scheduling methodology that optimises both 

the total tardiness and the total flowtime. 

ii. In some manufacturing and production firms, penalty cost incurred on tardy jobs 

increases with increase in total tardiness. Thus, to minimise the penalty cost, it 

is necessary to minimise the total tardiness. 
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iii. Furthermore, minimizing the composite function of the total tardiness and total 

flowtime implies that the organization attained performance development in 

production cycle time, respect of expected delivery dates, inventory and work in 

process management, adaptation and reactivity to variations in customer orders.  

iv. In manufacturing, a schedule that minimises the flowtime either singly or as a 

part of a composite function also minimises the production time and costs. This 

is because such a schedule achieved optimum utilization of the production 

facility, staff members, and equipment. 

v. The total cost of a schedule is a complex combination of processing costs, 

inventory costs, processor idle-time costs and tardiness penalty costs, amongst 

others. Therefore, considering scheduling approaches with sum of total tardiness 

and total flowtime is very relevant within the context of real life scheduling 

problems. 

vi. A schedule that minimises only the total flowtime will ensure proper inventory 

management, reduction in production cost and profit maximization but offers no 

solution to late delivery of goods and services. Thus the firm may incur some 

tardiness penalty or loses its good will. On the other hand, scheduling approach 

for minimizing only the total tardiness will ensure prompt delivery of goods and 

services but with no consideration to breakeven and profit variables. Therefore, 

combining the two criteria to form a bi-criteria problem will ensure the 

aggregation of the benefits of each component. 

 

1.6    Problem Statement 

1.6.1 Broad consideration 

Consider the operation of a firm (production or servicing firm) with only one processor 

or with multi-processors but one processor constituting a bottleneck. Examples of the 

formal include an auto repair firm with only one working lift, a working condition that 

requires the use of programmed robot with only one robot, a vehicle spraying shop with 

only one oven, among others. The shipping department of a firm which product is in 

high demand will constitute a bottleneck, if it receives larger purchasing orders beyond 

outflow capacity. A coupling machine of a ball point pen firm also constitutes a 

bottleneck, if several batches of components of the pen from other departments are ready 

simultaneously. The spraying section of an auto repair firm usually constitute a 

bottleneck, if the work output from other sections (like mechanical, electrical, body 
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section) transferred to the spraying section is higher than the outflow of the section. A 

bottleneck processor has the longest queue in a multi-processors system which 

ultimately, results in failure to meet the delivery date and, therefore, has to be given 

special attention. 

 

A situation of job accumulation is inevitable in a bottleneck processor and in a single 

processor system with inflow consistently exceeding the outflow. This could result in 

tardiness penalty either in monetary terms or loss of value. Although, proper scheduling 

has been identified as a solution to the problem, the combinatorial nature of job 

sequencing makes the solution a complex one. For an instance, ten accumulated jobs can 

be scheduled in 3, 628,800 different ways.  

 

The accumulated jobs can be classified into two groups: the zero and the non-zero 

release dates jobs. For both groups, the firm will be interested in completing all the jobs 

with minimum deviation in the delivery dates. Also, for proper inventory management, 

the firm will also plan that the jobs spend the minimum possible times in the shop. To 

achieve this, a schedule that minimises the total tardiness and the total flowtime, either 

singly or as a composite function, will be required. 

 

1.6.2   Problem classes 

A close examination of the problem statement reveals that the scheduling problem 

considered here can be decomposed into six variants. These are the scheduling problems 

of minimizing the: 

i. Total Flowtime of jobs with Zero Release Dates (TFZRD), 

ii. Total Flowtime of jobs with Release Dates (TFRD), 

iii. Total Tardiness of Jobs with Zero Release Dates (2TZRD), 

iv. Total Tardiness of jobs with Release Dates (2TRD), 

v. Composite function of  Total Tardiness and Total Flowtime with Release 

Dates (3TFRD), and 

vi. Composite function of Total Tardiness and Total Flowtime with Zero 

Release Dates (3TFZRD). 
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Extensive literature review has shown that only the scheduling problem of minimizing 

the TFZRD is a Class P scheduling problem, while others are NP-hard. The Shortest 

Processing Time (SPT) algorithm (Smith, 1956; Bansal and Kulkarni, 2015) produced 

optimal solution for the scheduling problem of minimizing the TFZRD.  Also, the 

Modified Due Date (MDD) (Baker and Bertrand, 1982; Naidu, 2002) and KSA I 

algorithms (Oyetunji et al., 2012) yielded effective solutions for the scheduling 

problems of minimizing the 2TZRD and TFRD respectively. However, problems (iv, v 

and vi), which are tardiness related are open problems for which an improvement can be 

made on the state of knowledge.  

 

Given the problem description, the following single processor scheduling problems 

parameters are required: 

i. A set of n jobs : 𝐽1, 𝐽2, 𝐽3, … , 𝐽𝑛 

ii. The processing time of each job; 𝑝𝑖 

iii. The release or ready time of each job; 𝑟𝑖, and 

iv. The due dates of each job; 𝑑𝑖. 

 

1.7   Study Objectives 

The primary objective of this study is to develop effective heuristics for solving the 

single processor scheduling problem of minimizing the: total tardiness of jobs with 

release dates (2TRD), total tardiness and total flowtime of jobs with zero release dates 

(3TFZRD) and total tardiness and total flowtime of jobs with release dates (3TFRD). 

The secondary objectives are: 

i. To propose solution methods for 2TRD, 3TFZRD and 3TFRD and to 

evaluate their effectiveness and efficiency relative to the selected existing 

solution methods. 

ii. To demonstrate the utility of the proposed solution methods. 

 

1.8 Assumptions Made in the Study 

In solving the problems outlined in sub-section 1.6.2, the following assumptions are 

considered 

i. Processors never break down and are available throughout the scheduling 

period. 
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ii. The problem is deterministic 

iii. Splitting of jobs, job cancellation and job pre-emption are not allowed; and  

iv. Only one job can be processed at a time. (This is the processor capacity). 

 

1.9  Justification for the Study 

The importance of the two performance measures were discussed in section (1.4). 

Furthermore, the selection of the single processor environment is not only because of its 

wide industrial application, but also, due to the fact that the multiple processors 

environment can be partitioned into single processor units. Baker and Trietsch (2009) 

discussed the concept of fundamental partition of multiple processors into single 

processor units. 

 

Furthermore, a single processor can also constitute a bottleneck in a chain of processes 

or processors, such that the output of the production line is limited by the throughput of 

the bottleneck processor (Michael et al., 2015). Almost every system has a bottleneck. 

If a system was running at full capacity, at least one processor would be accumulating 

jobs. A bottleneck processor restricts the entire production processes (Yang et al., 2006). 

Therefore, identifying the bottleneck processor and scheduling the jobs effectively on it 

will enhance the output for the whole system (Bao et al., 2012). Identifying bottleneck 

is critical for improving efficiency in a production line because it identifies the area 

where accumulation occurs. The processor that accumulates the longest queue is usually 

the bottleneck. Therefore, identifying the bottleneck and applying a proper scheduling 

policy on the processor will minimise stalls in production, supply overstock, pressure 

from customers and low employee morale.  

 

1.10  Outline of the Succeeding Chapters 

This thesis is set out in six chapters. Chapter two examines the literature related to this 

research, including an assessment of the existing models or solution techniques for the 

subject matter. The basic methodology employed for this research work, the simulated 

problems generated, the real life problems explored as well as the various comparative 

analyses carried out on the heuristics proposed are discussed in chapter three. Models’ 

development as well as the implementation of the models for all the problem classes are 

discussed in chapter four. 
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The performance of the models in terms of the effectiveness and efficiency, the results 

of the comparative analyses as well as the utility of the models to real life problems are 

enumerated and discussed in chapter five. Conclusions based on the results obtained for 

each problem class, contribution of the work to knowledge, industrial practice and policy 

as well as recommendations for future research are also discussed in chapter six  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

 

 

CHAPTER TWO 

LITERATURE REVIEW 

2.1   Introduction 

It is necessary to provide background information and previous research that is relevant 

to the subject area in this study. This would assist in identifying the knowledge gaps that 

demand further investigation by critiquing the existing findings. It will also aid in 

comparing previous findings. In view of this, this chapter presents a comprehensive 

review of literature on the different classes of scheduling problems. Section 2.1 

highlights the historical background of production scheduling in manufacturing. The 

state of knowledge on the subject matter is discussed in sections 2.2 - 2.6. 

 

2.2   Historical Background of Production Scheduling 

Production and servicing managers have changed over the years from capitalists who 

developed innovative technologies to custodians who struggle to control complex 

systems to optimise multiple objectives (Skinner, 1985). Production scheduling started 

in a simple way by determining when work on an order should commence and when the 

order should be due (Jeffrey, 2008). They did not provide any information about the time 

required for individual operations or jobs. This type of schedule was widely used before 

formal methods became available. The history of formal production scheduling started 

from the first chart developed by Henry Gantt (1916) to advance scheduling systems that 

now rely on algorithms. 

 

Gantt explicitly discussed scheduling, especially in the job shop environment. Moreover, 

he discussed the need to coordinate and schedule activities to avoid “interferences”. In 

1916, Gantt designed chart used by foremen and supervisors to know whether 

production was on schedule, ahead of schedule, or behind the schedule.  

Gantt chart is used to measure activities by the amount of time needed to complete them. 

According to Cox et al. (1992), ‘Gantt chart is the earliest and best known type of control 
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chart designed to show graphically the relationship between the planned performance 

and the actual performance’. Though, Gantt chart remains one of the most common tools 

for planning, controlling and monitoring production, other tools including planning 

board, loading and line of balance have been developed over the years.  However, with 

the advancement in technology, computer based production scheduling emerged. 

Among the many benefits of information technology is the ability to execute complex 

algorithms automatically. The development of better algorithms for creating schedules 

is thus an important part of the history of production scheduling.  

 

Linear programming was developed in the 1940s and applied to production planning and 

scheduling problems. George Dantzig (1947) invented the simplex method, a general 

but powerful technique for solving linear programming problems. In the 1950s, research 

into sequencing problems motivated by production scheduling problems led to the 

development of useful algorithms like the Johnson's rule for the two-processor flow 

shops, the Earliest Due Date (EDD) rule for minimizing maximum lateness, the Shortest 

Processing Time (SPT) rule for minimizing average flowtime, Shortest Remaining 

Processing Time (SRPT) rule to minimise the average completion time with release 

dates (Phillips et al., 1998), Vladimír and Sudhakara (2010) solution method for flow 

shop scheduling algorithm to minimise completion time for n-jobs m-machines problem, 

among others. 

 

Solving more difficult problems require a different approach (Roscoe, 1971). The BB 

technique appeared around 1960. The algorithm implicitly enumerates all the possible 

solutions and finds an optimal one. The advent of complexity theory in the 1970s 

explained why some scheduling problems are ‘hard’. Algorithms that can find optimal 

solutions to hard scheduling problems in reasonable time are unlikely to exist. However, 

since decision makers need solutions in minimum possible time, the use of search 

algorithms that can find good solutions have become inevitable. These algorithms are 

called approximation algorithms or heuristics. Other innovations include genetic 

algorithms, simulation annealing, ant colony optimization, and other evolutionary 

computation techniques. Developments in artificial intelligence have led to agent based 

techniques and rules based procedure that mimic the behavior of human organizations. 

Scheduling research is continuous and some problems are generated based on the 

existing situations. 
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2.3   Solution Methods to Scheduling Problems 

There are various solution methods for solving scheduling problems. The choice of a 

given method depends on the application of the problem, the decision maker or the end 

user as well as the number of jobs involved (Karger et al., 1997). Akinyemi et al. (2002) 

opined that no specific rules are better than others for all performance objectives. 

Scheduling solution methods can be classified into the following: 

 

2.3.1 Complete enumeration 

In this method, all the possible sequences are analyzed to select the optimal. However, 

scheduling problems are combinatorial in nature. For an instance, in a  𝑛 × 𝑚 problem 

size, the number of possible schedules is given by : (𝑛!)𝑚.  

where:  

n is the number of jobs and  

m is the number of processors.  

 

Therefore, the number of possible sequences grow exponentially as the problem size 

increases. Thus, the method is usually applying in solving scheduling problems with 

limited problem sizes. This implies that the method is very effective but requires 

prohibitively high execution time (Panneerselvam, 2007). 

 

2.3.2 Implicit enumeration techniques 

These methods list all the possible schedules and eliminate the non-optimal ones from 

the list leaving those that are optimal (Pinedo, 2008). Common examples of implicit 

enumeration techniques are the dynamic programming method and the Branch and 

Bound (BB) method. Like the complete enumeration, the method is also very effective 

but inefficient. 

 

2.3.2.1 The Branch and Bound (BB) technique 

The Branch and Bound (BB) is a general purpose strategy for solving many 

combinatorial problems. The method consists of two fundamental procedures; the 

branching and the bounding procedure. Branching is the process of partitioning a large 

problem into two or more subproblems. Bounding is the process of calculating a lower 
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bound of the optimal solution of a given subproblem (Kager et al., 1999). The branching 

procedure replaces an original problem by a set of new problems that are:  

i. Mutually exclusive and collectively exhaustive subproblems of the original, and 

ii. Partially solved versions of the original. 

 

The bounding process provides a means for curtailing and reducing the number of nodes 

to be exhausted so as to maximises the efficiency of the procedure. It involves 

calculating a lower bound of the solution to each subproblem generated in the branching 

process (Neda and Hamid, 2015). This can be done by: 

i. Applying a suboptimal method with limited computational effort at the outset 

of the procedure. For an instance, in a minimization problem, supposing that 

a suboptimal method has an associated performance measure D.  If one of the 

subproblems in the branching process has an associated lower bound A > D. 

Then there is no need to further analyze the subproblem in the search for an 

optimum. This is because, no resulting solution can yield a better value than 

D. When such a subproblem is found, its branch is said to be fathomed. By 

not branching any further from the fathomed branches, the enumeration 

process is reduced.  

ii. Computing the contribution of the assigned subproblems to the total objective 

and consider the node(s) with the lowest value. The nodes with the lowest 

lower bound will be explored further. Ties are broken arbitrarily, in the first 

instance.    

 

Having branched the problem, the two common search procedures are the depth first 

search and the frontier search (French, 1982). In the depth first search, the tree is 

searched by exploring a branch and systematically working it down to take either of the 

following decisions: 

i. Eliminating the branch either before the final node or at the final node: This 

decision is taken if the value of the objective function from the branch is 

worse than the value obtained from the suboptimal method or the previous 

explored branch. 

ii. Exploring the objective function value at the final node of the branch as the 

trial or the optimal solution. The former decision is valid, if the objective 
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function value obtained from the branch is better than the value from the 

suboptimal method and there are more branches to be explored. The latter 

decision hold, if the branch is the last one and yielded the best value of 

objective function compared to other explored branches or the suboptimal 

solution. 

 

Furthermore, in the frontier search, we always branch from the node with the lowest 

lower bound. In other words, we initially branch to all the number of possible 

branches or nodes in the first level. The contribution of each of these nodes to the 

total objective function is calculated. The node with the lowest value is explored 

further to the next level. However, if more than one node has the same value, all the 

nodes are advanced to the next level. Furthermore, at the next level, if the value of 

the contribution of the objective function calculated from the explored node is 

greater than the value obtain from any of the unexplored node in the previous level, 

then the unexplored node in the initial level is also further analysed. The process 

continues until the final schedule is obtained.  

 

The depth-first search method requires a lesser storage but a greater deal of 

computation compared to the frontier method. Thus, the latter method obtains the 

optimal faster than the former method (French, 1982). The BB method guarantees 

optimality in terms of effectiveness but easier to implement in problems with limited 

number of jobs due to the computational requirements. 

 

2.3.3 Heuristics method 

The implicit and complete enumeration methods have one inevitable limitation; the 

methods require prohibitively high computation time for large problem sizes. heuristic 

methods avoid this drawback. They can obtain solutions to large problem sizes with 

limited computational efforts. The limitation of heuristic methods is that, they do not 

guarantee optimality (Brucker, 2007). However, the effectiveness of a given heuristic 

can be measured through comparative analyses against the optimal solution for a feasible 

limited number of jobs (Brucker, 2007).  This is the basis on which the present work is 

anchored 
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2.3.4 Metaheuristics method 

Metaheuristic methods are efficient approaches for solving many optimization problems 

(Ilhem et al., 2013). A metaheuristic is a procedure designed to provide a good solution 

to an optimization problem with limited computation capacity (Bianchi, et al., 2009). 

The methods sample a set of solutions which is too large to be completely enumerated 

and may make few assumptions about the optimization problem being solved (Blum and 

Roli, 2003). Like heuristics, metaheuristics do not guarantee optimality. Examples of 

metaheuristics includes tabu search, simulated annealing, genetic algorithm among 

others. 

 

2.4 Complexity of Scheduling Problems 

Complexity theory provides a mathematical framework by which computational 

problems are studied (Sipser, 1997). The theory provides a means of measuring the 

performance of algorithms with respect to computational time, T. The time complexity 

of a solution method expresses the total number of operations such as additions, 

multiplications and comparisons for each problem instance as a function of the size of 

the instance (Weisstein, 2015). The input size of a typical scheduling problem is 

bounded by the number of jobs n, the number of machines, m and the number of bits to 

represent the largest problem parameter (the processing time, the due date, the release 

date, etc.).  

 

An algorithm is a step-by-step procedure for solving computational problems (Brian and 

Daniel 2007). For a given input, it generates the correct output after a finite number of 

steps. An algorithm is said to be polynomial, if its running time is bounded by a 

polynomial input size. Polynomial algorithms are sometimes called efficient algorithms. 

For scheduling problems, typical values of polynomial execution time includes O(n²) 

and O(nm), where the big O-symbol stress that the numbers of elementary computations 

of the algorithm grow at the same rate as the function Cn², where C is a constant.  

 

The class of all polynomially solvable scheduling problems is called the Class P. 

Examples of Class P scheduling problems are the scheduling problem of minimizing the 

total flow time of jobs with zero release dates, the scheduling problem of minimizing 

the number of tardy jobs with zero release dates, the scheduling problem of minimizing 
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the maximum tardiness of jobs with zero release dates, the scheduling problem of 

minimizing the total flowtime of jobs with zero release dates, among others. 

 

Another class of optimisation problems is known as the NP-hard problems. For such 

problems, no polynomial time algorithms are known that yield optimal solutions. The 

methods capable of producing optimal results for NP-hard scheduling problems are the 

complete enumeration and the implicit enumeration. However, these methods require 

prohibitive computation time especially for large problem sizes. Therefore, a NP-hard 

scheduling problem with large number of jobs cannot be practically solved optimally. 

Brucker (2007) stated that small sized NP-hard problems can be solved by BB method, 

while larger sized problems required approximation algorithms or heuristics. 

 

2.5 Approaches to NP-hard Scheduling Problems 

The first step in solving a scheduling problem is to determine the problem complexity 

status. This can be done by extensive literature review. Many scheduling problems are 

known to be NP-hard. Therefore, it is unlikely to obtain optimal solution to those 

problems efficiently, i.e. by polynomial time algorithms. An optimal solution can be 

found for a NP-hard problem by various methods of reduced enumeration, either by a 

BB algorithm or by formulating the problem as a mathematical programming problem. 

In both cases, for problems of practical interest only small-sized problems can be 

handled due to the time complexity involved. An exact solution to a job shop problem 

with 10 jobs and 10 machines remained unknown for decades (Papadimitriou, 1994).  

 

In order to find a “good” solution within an acceptable time for a NP-hard scheduling 

problem with large problem sizes, approximation algorithms or the heuristics solution 

methods can be developed. An algorithm is called an approximation algorithm, if it is 

possible to establish analytically the closeness of the generated solution to the optimum 

(either in the worst-case or on the average). The approximation ratio gives the relative 

closeness of an approximation algorithm to the optimal. 

 

The performance of a heuristic is usually analysed experimentally, through a number of 

runs using either generated instances or known benchmark instances. Heuristics can be 

very simple but effective. Therefore, a well-tailored heuristic, which performance has 
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been guaranteed experimentally for a given objective, is usually implemented in real life 

problems. 

 

Furthermore, when a solution method besides the complete enumeration and an implicit 

enumeration technique yields an optimal solution for a Class P scheduling problem, the 

term exact algorithm or simply say algorithm is used. Example is the Shortest Processing 

Time (SPT) algorithm for solving the scheduling problem of minimizing the total flow 

time of jobs with zero release date on a single machine. Early Due Date (EDD) algorithm 

for minimizing the total lateness or maximum tardiness of jobs with zero release date on 

a single machine. 

  

2.6   Single Processor Total Tardiness Problems (SPTTP) 

Scheduling a set of jobs which are to be processed on a single processor to minimise the 

total tardiness is known as the Single Processor Total Tardiness Problems (SPTTP). Due 

to the complexity of the SPTTP, Du and Leung (1990) proved that both the static and 

the dynamic variants of the problems are NP-hard with a given set of independent jobs. 

This implies that no heuristic has been found that yields optimal solutions. Thus, 

complete and implicit enumeration techniques are usually employed for solving the 

problems.  However, computational time increases exponentially as the problem size 

grows (Potts and Van Wassenhove, 1982). This limits the use of enumeration 

techniques. 

 

Nevertheless, Baker and Bertrand (1982) produced a near-optimal solution for the static 

variant of the problem. The solution is called the Modified Due Date (MDD) rule. Bean 

and Hall (1985) discusses extensively the accuracy of MDD rule. Extensive literature 

review shows that different researchers have explored approximation algorithm or an 

enumerative technique like the BB for solving the dynamic version of the problem. For 

instance, Chu (1992) proposed a BB algorithm that can solve up to 25 jobs for the static 

variant of the problem and up to 20 jobs for the dynamic variant.  Baptiste et al., (2004) 

presented a BB procedure with a time window constraint which represents the time 

interval within which each job can be scheduled.  Furthermore, Chu and Portmann 

(1992) explored the dynamic version of the MDD rule to solve the problem. Naidu 

(2003) also stated that the dynamic version of the MDD rule solves the problem 
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satisfactorily. Moreover, Baker and Triesch (2013) also listed authors who have 

explored heuristics to solve the problem. This is shown in Table 2.1.   
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Table 2.1: Some existing heuristics that solve the SPTTP with release dates 

Performance 

Measure 
Best Rule (s) 

 Rules 

Compared 
Author 

 Total 

tardiness 
SPT, ODD SCR Kanet and Hayya (1982) 

 SPT, EDD MST, SCR Baker and Bertrand (1981) 

 
MST, SPT, 

EDD 

OST, S/OPN, 

ODD, SCR 
Muhlemann et al.,(1982) 

  SPT/CR COVERT 
Anderson, and Nyirenda 

(1990) 

Source:   Baker and Trietsch (2013): Principles of Sequencing and Scheduling                                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

Baker and Trietsch (2013) stated that none of the heuristics produces the optimal or near 

optimal solution. Thus, the problem remains open for further research. Therefore, 

proposing new heuristics that can produce better results or solutions not significantly 

different from the optimal even for small sized problems will fill this gap. In addition, 

selecting among the existing heuristics based on performance for comparative analyses 

against the intended proposed heuristics would also contribute to the state of knowledge. 

This work will achieve this feat.    

 

2.7   Multi-criteria Scheduling Problems 

These are scheduling problems in which two or more performance objectives are to be 

optimised. Multi-criteria scheduling problems are usually NP-hard (Rahimi, 2007). 

Parviz (2009) stated that the larger the number of performance objectives in scheduling 

problems, the higher the degree of computational complexity involved. When a 

scheduling problem contains only two criteria, it is called a bi-criteria scheduling 

problem (Ehrgott and Grandibleux, 2000). The total cost of a schedule is a complex 

combination of processing cost, inventory cost, processor idle-time cost and lateness 

penalty cost, amongst others (Oyetunji and Oluleye, 2009). A performance measure 

usually represents only one component of the total costs of a schedule (French, 1982). 

Considering scheduling problems with more than one criterion is very relevant within 

the context of real life scheduling problems (Nagar, et al., 1995). 

 

A necessary condition for multicriteria scheduling problems is the presence of more than 

one criterion. The sufficient condition is that the criteria must be conflicting. Two or 

more criteria are said to be conflicting, if the solution methods that produced optimal or 

near optimal for one impair or does not necessarily yield optimal or near optimal for the 

others. Two criteria are said to be “strictly”, if increase in satisfaction of one results in 

decrease in satisfaction of the other.  However, the sufficient condition does not 

necessarily stipulate “strictly” conflicting criteria (Tapan, 2012).  

 

2.7.1 Formulation of multi-criteria scheduling problems 

Generally, scheduling problems can be formulated, using three parameters notation 

given by: 𝛼|𝛽|𝛾  ( Brucker, 2006). 

where : 
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 α is the number of processor(s). α = 1 for single processor, α = 2 for two processors,  

β is the job characteristics like pre-emption, release date, due date, among others, and 

γ is the objective function. 

Furthermore, Branke et al., (2008); Deb 2011 defined multi-objectives scheduling 

problems as: 

 

𝑀𝑖𝑛/𝑀𝑎𝑥 {𝑓1 ( 𝑥), 𝑓2 ( 𝑥), 𝑓3 ( 𝑥), … , 𝑓𝑚(𝑥)}          (2.1)         

subject to x ∈ 𝑆  

where: 

S is the set of feasible solutions, 

x is the decision vector, x = (x1, x2, x3, . . . , xn), 

fi is the performance objectives or criteria (i = 1,2, . . . , m), and 

m is the number of  performance criteria to be optimised.  

 

2.8   Solution Methods to Multi-criteria Scheduling Problems 

There are basically three approaches by which multi-criteria scheduling problems may 

be solved. These are: the hierarchical, simultaneous, and pareto-optimal approaches.  

 

2.8.1 Hierarchical or Lexicographic optimization   

This is an approach in which one of the objectives is considered as the objective to be 

optimised while others are considered as the constraints. This implies that the method 

optimises one goal at a time starting with the highest priority goal and terminating with 

the lowest, without degrading the quality of the higher priority goal (Taha, 2007; Ali, 

2016). 

 

T’kindt et al. (2001) proposed a BB algorithm and a heuristic for solving a-two processor 

flow shop scheduling problem with the objective of minimizing the total flowtime, 

subject to the constraint that the makespan is minimum. The problem was represented 

as F||Lex(𝐶𝑚𝑎𝑥𝐹𝑡𝑜𝑡) where the notation Lex(𝐶𝑚𝑎𝑥𝐹𝑡𝑜𝑡) indicates that the makespan 

(denoted by 𝐶𝑚𝑎𝑥) is minimised first and among all the schedules that minimise the 

makespan, a schedule was found that minimises the total flowtime (denoted by 𝐹𝑡𝑜𝑡). 

Results of computational tests showed that the proposed BB procedure was effective in 
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solving the problem for up to 25 jobs.  For problems containing larger number of jobs, 

the proposed heuristic, which was also used as the upper bound in the proposed BB, was 

quite effective in finding a good schedule. Rajendran (1995) proposed a multi-criteria 

scheduling problem in which the objective function is minimization of the weighted sum 

of machine idle time, total flow time and makespan.  T’kindt et al. (2002) proposed the 

SACO algorithm for a-two processor flow shop scheduling problem with the objective 

of minimizing the total completion time and the makespan. The latter was minimised 

prior to the former. The problem was represented as: F2||Lex(𝐶𝑚𝑎𝑥,∑ 𝐶𝑖𝑗). 

Computational experiments revealed that the SACO yielded better results compared to 

existing heuristics. It was conjectured that for larger problems, SACO was the most 

efficient.  

 

Also, Hoogeveen (2005) solved a single processor hierarchical minimization problem in 

which the dominant criterion was the total completion time and the recessive criterion 

was the maximum lateness. The problem was represented as 1||Lex( ∑ 𝐶𝑗 𝑗
, 𝐿𝑚𝑎𝑥). The 

SPT algorithm was used to minimise the total completion time ( ∑ 𝐶𝑗 𝑗
). Maximum 

lateness (𝐿𝑚𝑎𝑥) was minimised, using the EDD schedules that conformed to the SPT 

sequence.  Abdullah (2010) studied multicriteria scheduling problems to minimise total 

tardiness subject to maximum earliness or tardiness. Furthermore, Haidar and Tariq 

(2011) explored the EDD, SPT and MST heuristics to solve a single processor 

scheduling problem of minimizing three hierarchical criteria; the maximum tardiness, 

the maximum earliness and the sum of square of completion time. Ulungu et al, (1999) 

proposed a tool called MOSA, for solving multicriteria problem. 

 

However, the hierarchical approach has two major limitations; the approach solves 

problems only in part and if no criterion is dominant, the method leads to a schedule that 

is unbalanced. 

 

2.8.2 Simultaneous optimization method 

In this method, the criteria are aggregated into single objective function called the Linear 

Composite Objective Function (LCOF). The expression for the LCOF, with respect to 

criteria X, Y and Z, is given by: 
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F(X,Y) =  𝛼X + 𝛽Y + 𝛾𝑍           (2.2) 

 

Thus, the LCOF consists of the sum of the relative weights of each objective multiplied 

by the value of each of the objectives.   

Mathematically, LCOF can be expressed as: 

Optimise F(X) = a1X1   +  a2X2  +  a3X3 +, … , +amXm  = ∑ akXk
m
k=1    (2.3) 

 such that  ∑ (ak) = 1m
k=1      0< ak < 1 , for all k =  1, 2, … , 𝑚                              (2.4) 

 

  where: 

 𝑎1, 𝑎2, … , 𝑎𝑚 are the relative weights of criteria X1, X2, … , Xn to be optimised, 

respectively. 

F(X) is the Linear Composite Objective Function (LCOF), and 

m is number of the criteria to be optimised. 

 

Simultaneous optimization method has been explored for solving multi-criteria 

scheduling problems. For instance, Tabucanon and Cenna (1991) suggested a method 

for minimizing the mean flowtime and the maximum tardiness by assigning weights to 

both criteria. They generated efficient schedules based on the Wassenhove and Gelders 

(1980) algorithm and explored simulation approach to solve the problem. Furthermore, 

Farhad and Vahid (2009) explored simultaneous optimization for multi-criteria problem 

for minimizing the composite function of total machining costs (total completion time), 

the earliness, the tardiness penalties and the total makespan. Oyetunji and Oluleye 

(2010) proposed two heuristics (HR9 and HR10) for solving the bi-criteria scheduling 

problem for minimizing the total completion time and the number of tardy jobs with 

release dates on single processor. HR9 and HR10 were compared with the HR7 heuristic 

proposed by Oyetunji (2010). Based on the experimental results, the HR7 heuristic was 

recommended for the bi-criteria problem with number of jobs (n) less than 30 jobs while 

the HR10 heuristic was recommended for the bi-criteria problems with a minimum 

number of thirty jobs (n ≥ 30). 

 

Erenay et al. (2010) considered the bi-criteria scheduling problems for minimizing the 

number of tardy jobs and the average flowtime on single processor. They proposed four 

heuristics, two of which were constructive algorithms and the others were metaheuristics 
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approaches. From the analysis, it was concluded that the proposed constructive 

algorithms produced efficient schedules and performed better than the existing 

heuristics.  Oladokun et al. (2011) developed a bi-criteria algorithm for the simultaneous 

optimization of the makespan (𝐶𝑚𝑎𝑥) and the number of tardy jobs (NT) on a single 

processor with sequence dependent set-up time. An existing single criterion algorithm 

called the Set Sequencing Algorithm (SSA), was adopted for solving the bi-criteria 

problem. Graphical User Interface (GUI) based software of the algorithm was developed 

and its performance was evaluated with real life problems. 150 problems, with sizes 

ranging from 20 to 150 were randomly generated. The values of the Cmax and the NT of 

the solution sequences were analysed. The output sequences gave an average reduction 

of 32.1% in both measures compared with the input sequences. It was concluded that the 

SSA was suitable for the bi-criteria problem.  

 

However, there are two major setbacks associated with the simultaneous optimization 

method. These are the problems of skewness (arising when the value of one criterion is 

a multiple of the other) and dimensional conflict (arising when the two criteria have 

different units). Both challenges were tackled through normalization proposition for 

scheduling problems with release dates (Oyetunji and Oluleye, 2009; Akande et al 

2015).  However, to the best of this researcher’s knowledge, the normalization procedure 

for the static environment in which the release dates is zero remained an open problem. 

This work fills the gap. 

 

2.8.3 Pareto-optimal solution approach  

Pareto-optimal approach deals with the situation in which there is no information about 

the associated weight or the attached importance of either of the criteria. In this 

technique, a set of compromise solutions on both criteria are sought. These are called 

the pareto-optimal solutions (Oyetunji, 2011). This approach involves finding a set of 

all pareto-optimal schedules.  

 

Hoogeveen (2005) stated that finding a set of pareto-optimal schedules is required in 

order to obtain a solution to a bi-criteria scheduling problem in polynomial time. Once 

the set of all pareto-optimal schedules has been obtained, the schedule that yields the 

minimum value of the composite objective function gives the solution to the bi-criteria 
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problem. Fatih et al. (2009) proposed a pareto optimization approach for minimizing the 

number of tardy jobs and the average flowtime on single processor.  

 

One limitation of pareto-optimal approach is that it does not provides a final solution to               

multi-criteria problems. It only provides a set of schedules (Oyetunji and Oluleye, 2009). 

This requires the decision maker to select among the set of solutions, the best schedule 

that optimises the required objective. Therefore, meaningful research is necessary to 

support the decision maker for the post-pareto analysis phase. 

 

Heidi and David (2006) proposed two methods to prune the size of pareto-optimal sets. 

The first method is called the non-numerical ranking. The method provides the decision 

maker a set of solutions that match his preferences and compares solutions with different 

objective function combinations. The second approach is called the clustering method. 

In this approach, the k-means algorithm was proposed to group the pareto-optimal set 

into k different clusters with members of the same cluster similar to each other. The 

solution that was closest to the centroid of each cluster was chosen to be the 

representative solution in its respective cluster. Thus, the size of the pareto-optimal set 

was reduced to k general solutions to be analyzed by the decision maker. 

 

2.9   Bi-criteria  Scheduling Problems 

The advantages of implementing a bi-criteria scheduling approach over its single criteria 

constituents are enormous. For an instance, exploring a schedule that minimises only the 

total flowtime will ensure reduction in production cost and profit maximization but 

offers no solution to late delivery of goods and services. Thus the firm’s may incur some 

tardiness penalty or lose its good will. On the other hand, minimizing only the total 

tardiness will ensure prompt delivery of goods and services but with no consideration to 

breakeven and profit variables. Also, minimising total flowtime does not involve due 

date, thus firms problem is addressed. In the case involving total tardiness, the client’s 

problem has priority and is therefore the problem addressed. Therefore, combining the 

two criteria to form a bi-criteria problem will better ensure the benefits accruing to both 

parties. 

 

Two variants of the bi-criteria scheduling problems for minimizing the total tardiness 

and the total flowtime are consider in this study; the static (zero release dates) and the 
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dynamic (non-zero release dates) variants. For the static variant, the SPT algorithm 

yields optimal solutions for the total flowtime while the MDD algorithm yields a near-

optimal solution for the total tardiness. However, not much work has been found for the 

bi-criteria combination of the two objectives. This may be due to the fact that multi-

criteria scheduling problems are NP-hard, independent of the complexity status of the 

corresponding single criterion problems (Della Croce et al., 2003). Nevertheless, 

extensive literature review shows that only few solution methodologies (two heuristics) 

were proposed for the problem. The heuristics were named the heuristicA and the 

heuristicB. The authors of the work claimed the heuristics were the first proposed 

solution method and thus are not compared with any other model (Sen and Dillepan, 

1999). Furthermore, the authors did not normalize the two objectives. There is therefore, 

no guarantee on the performance as well as the balance of the schedule obtained. In 

addition, the authors applied the heuristics only to four job sizes; 6, 7, 8, and 9 jobs. In 

this regard, there is a need to propose new heuristics for this problem and normalize the 

heuristics to avoid skewness towards either of the criteria. In addition, normalizing the 

heuristicA and heuristicB and comparing their performance to the intended proposed 

heuristics will also contribute to the state of knowledge. Also, implementing BB for 

small-sized problems and utilizing its results for benchmarking to measure the 

performance of the aforementioned heuristics will be a great feat. This work attempted 

to fill these gaps.  

 

Furthermore, the introduction of non-zero release dates to a scheduling approach offers 

wider application. Extensive literature review shows that no direct heuristic has been 

found that solves the non-zero release dates variant of the problem. This is probably due 

to the fact that each of the constituent objective function has been found to be NP hard. 

Thus, the bi-criteria combination of the two criteria is strongly NP hard.  However, 

Oyetunji and Oluleye (2012) proposed a Generalized Algorithm (GAlg) for solving 

multi-criteria scheduling problems using the individual objective. The algorithm is valid 

for both the static and dynamic environments. Therefore, it was presumed that 

implementing a GAlg for the problems and comparing the performance of the new 

proposed heuristics as well as the other heuristics from the literature to the GAlg (for 

both the static and dynamic variants) would also contribute to the state of knowledge on 

the subject matter. 
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CHAPTER THREE 

METHODOLOGY 

3.1   Introduction 

A research project contains a variety of dovetailing steps and procedure that are utilized 

in achieving the underlined objectives. The steps are interconnected and the validity of 

research findings depend on the acceptability of the methodology. In this regard, this 

chapter presents the step-wise procedure as well as the methods employed in this 

research work. In addition, the data analyses and the computer language to be utilized 

for coding the various solution methods to be developed are also enumerated. 

 

3.2  The Procedure 

The first step of a research is the identification of open problems. Extensive literature 

review has shown that significant contribution can be made to the state of knowledge 

for single processor scheduling problems with tardiness related criteria, especially, when 

considering its bicriteria variants with total flow time. Therefore, this work classified the 

identified problems into three classes which are the scheduling problem for minimizing 

the : Total Tardiness of jobs with Release Dates (2TRD), composite function of Total 

Tardiness and Total Flowtime with Zero Release Dates (3TFZRD) and composite 

function of the Total Tardiness and Total Flowtime of jobs with Release Dates (3TFRD). 

The problems are named the Class I, Class II and Class III, respectively.  

 

Furthermore, in solving a scheduling problem, it is necessary to determine the 

complexity status of the problem in order to select a suitable solution method. It has also 

been established through literature review that the identified problems are NP-hard. 

Thus, due to the complexity of the NP-hard problems, heuristic solution method was 

devised. However, in order to develop good heuristics for minimizing the stated criteria, 

the functional relationships between job parameters and the performance measures was 

also established. To achieve this, the problems were simplified and analysed with 



33 
 

equations. This also aided in further understanding of the problems which is the key to 

models’ development to produce good results. Therefore, two heuristics based on the 

iterative search method were developed for each problem class.  

 

The heuristics proposed for the Class I problem were applied directly. The two criteria 

that are involved in the Class II and Class III problems are expressed as a Linear 

Composite Objective Function (LCOF). This is called the simultaneous optimization 

approach. The approach was explored because it yields a final schedule without further 

analysis unlike the pareto approach and also gives a balanced solution independent of 

the relative weight of each of the constituent criteria compared to the hierarchical 

method. In addition, a case of the LCOF in which the two criteria are equally important 

(carry the same weight) was considered. This was to ensure a balance aggregation of the 

benefits of the two measures. However, the heuristics proposed remained valid, if the 

weight of either of the criteria changes. Although, the LCOF equation would need to be 

altered to accommodate the change. 

 

However, the problems of the skewness (arising when the values of one criterion is a 

multiple of the other) and the dimensional conflict (arising when the two criteria have 

different units) limit the use of the simultaneous optimization method. To avoid these 

problems, normalization was required. For the Class III problem in which the dynamic 

environment was considered, the existing normalization procedure found in the literature 

was first explored. For the Class II, in which the static environment was considered, a 

new normalization corollary was proposed. The heuristics proposed were then applied 

to minimise the normalized LCOF.  

 

The heuristics proposed were tested on randomly generated problems for performance 

measure. To achieve this, some single processor scheduling problems were simulated. 

MATLAB R2010 programing language was explored. The desktop tool module (editor) 

was utilized. The choice of MATLAB over some other computer programming 

languages, like C++, Fortran, VISUAL basic, etc. is based on the fact that it can be used 

interactively. This means, if some commands are typed for executions at the MATLAB 

command window, the results are given immediately. The parameters that were 

generated are: 
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i. The number of jobs (n), 

ii. The processing time (pi), 

iii. The release date (ri), and 

iv.  The due date, (di).  

 

Gursel et al. (2012) concept was adopted to generate these variables. The relations are 

given as follows:   

v. The processing time P follows the uniform distribution U(1,10). This implies 

that Pi varies randomly from 1-10 inclusive.  

vi. The release dates R follows the uniform distribution U(0, 40). This implies 

that Ri varies randomly from 0-40 inclusive.  

vii. The due dates Di is given by the equation;  Di = Ri + kPi.                     (3.1)                                                                                   

where k is uniformly distributed between U(1,4). 

 

The equations would be modified to suit the problem Class II, in which zero release 

dates constraints is being considered.  

 

Furthermore, the performance of a given solution method can be influenced by the 

problem size.  In other words, some solution methods perform better under smaller 

number of jobs, while some perform under large number of jobs. Therefore, in 

evaluating the performance of a solution method to scheduling problems, the method 

must be tested with a wide range of problem sizes. To achieve this, eighteen different 

problem sizes ranging from 5 to 1000 jobs and with fifty problem instances under each 

problem size were generated and explored for each problem class. The adopted range of 

problem sizes (5-1000 jobs) was to show that the heuristics proposed would be suitable 

for the small scale, medium scale, large scale and global firms. For instance, a small 

scale firm could be like small auto mechanic shops that can have up to 10 jobs waiting 

for processing. Also, a medium scale firm can have up 25 jobs on their production line. 

Furthermore, a very large and global firm (like Amazon shipping company, Maersk 

shipping Group) can have up to 1000 jobs on the line. Also, it is an established fact that 

a sample size (n) that is not less than 30 (n ≥ 30) is referred to as large sample size 

(Oyawale, 2006). Using this fact, the considered problem sizes were classified into the 

small-sized problems (5≤n≤ 10), medium-sized problems (15≤n≤ 25), and large-sized 

problems (30≤n≤ 1000). The adopted fifty problem instances was to ensure that the 
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results obtained were not simply due to chance but a true reflection of the performance 

of the solution methods.  

 

Furthermore, the implementation of the proposed heuristics over a wide range of 

simulated problem sizes succeeded the development of the heuristics and the simulation 

of single processor scheduling problems. This requires a great deals of computation and 

thus the use of computer programing language for coding is inevitable. For consistency 

and to achieve integration of the procedure, the same programing language (MATLAB) 

explored for the problem generation was also utilized. The coding of the heuristics and 

the implementation of the generated problems were in four phases or files.  These are;  

i. The random problem generation file, 

ii. The single instance file to solve a single instance of the problem, 

iii. The execution file, where the fifty instances required for any size problem were 

loaded and solved to obtained mean value of the objective function, and  

iv. The run problem file where the saved random problems generated as well as 

the execution file were loaded and run to obtain the required output.  

 

The output of the coding includes the following: 

i. The single processor scheduling problems parameters: These are the 

processing time, the release dates as well as the due dates. They are the output 

of the random problem generation file. 

ii. The value of the objective function of a single instance problem and the mean 

value of the objective function for the considered fifty instance: These are 

the single instant effectiveness and the mean effectiveness of the solution 

methods respectively. For the single criteria problem (2TRD), the 

effectiveness is the total tardiness while for the two bicriteria problems, the 

effectiveness is measure by the normalized Linear Composite Objective 

Function (LCOF). 

iii. The value of the execution time for each instant of the problem as well as the 

mean value of the execution time for the fifty instances of the problem: These 

are the single instant efficiency and the mean value of the efficiency 

respectively.   

iv. The final sequence of each of the problem instance. 
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Furthermore, some heuristics would be selected based on their performance from the 

literature to solve the same problems implemented for the proposed heuristics. The 

Branch and Bound (BB) procedure which gives an optimal result but requires a 

prohibitively high execution time would also be implemented for benchmarking. 

However, due to the prohibitive execution time, the BB method would only be applied 

to problem sizes not exceeding twenty-five jobs. The output (the effectiveness and 

efficiency) for all the implemented solution methods in each problem class would be 

grouped into the small-sized (5 ≤ n ≤ 10), medium-sized ((15 ≤ n ≤ 25) and large-sized 

(30≤ n ≤ 1000) problems for various comparative analyses. The standard deviation of 

the effectiveness and the efficiency of each of the problems-sized (small, medium and 

large sized) would also be computed. 

 

3.3 Data Analysis 

The relative effectiveness and efficiency of different solution methods were considered 

in selecting the method to generate schedules in production or servicing systems. 

Therefore, to demonstrate the utility of the heuristics proposed, the following analyses 

were carried out.  

 

3.3.1 The mean and standard deviation  

The mean of the effectiveness (values of the objective function) as well as the efficiency 

(the execution time) for the small, medium and large problem-sizes for the three problem 

classes were computed. Furthermore, in order to measure the spread or the closeness of 

the mean value to the value of the objective function in each of the individual number 

of jobs, the standard deviations was also computed. It is expected that the standard 

deviations would have large values (may even be greater than mean in some cases) for 

Class 1 problem in which the total tardiness in the objective function. This is because, 

the values of the objective function would be greatly spread out due to the combinatorial 

nature of scheduling problems. In other words, the data are unlikely to cluster around 

the mean. However, for Class II and III, where normalization were carried out, the value 

of objective function is expected to lie between 0-1, the standard deviation is expected 

to be small.   
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3.3.2 The approximation ratio (A.R) 

The approximation ratio of an algorithm is the ratio of the value of the objective function 

obtained from the algorithm to the benchmark value (𝑩𝑴𝒗𝒂𝒍𝒖𝒆). The benchmark value 

can either be the optimal value from the BB method or the standard value obtained from 

the most performed heuristic. For an example, the A.R of a given AA6 heuristic is 

determined by:   

 

A.R of AA6 = 
𝑨𝑨𝟔 𝑽𝒂𝒍𝒖𝒆 

𝑩𝑴𝒗𝒂𝒍𝒖𝒆 
                                                                               (3.1)    

 

A lower approximation ratio (A.R) value indicates better performance for a 

minimization problem. This is because, the ratio measures the closeness of the heuristics 

to the benchmark value. Thus, a lower A.R value indicates the heuristic is closer to the 

𝑩𝑴𝒗𝒂𝒍𝒖𝒆 while a higher A.R value indicates the heuristic is far away from the 𝑩𝑴𝒗𝒂𝒍𝒖𝒆. 

 

3.3.3 Test of mean (t-test) 

The A.R test reveals that there is difference between two solution methods by 

determining the ratio of performance of the two solution methods to each other. 

However, the test fails to indicate the significance of the observed variation. T-test is 

used to determine if the values of the objective function obtained for different solution 

methods are statistically different. The common types of t-tests are; the one sample t-

test, an independent samples t-test and the dependent samples t-test.   

 

The one sample t-test compares the mean of one group against a known, predetermined 

or benchmark value. For an example, a cut point for a test score.  An independent t-test 

compares the means of two independent groups. For an example, comparing the 

performance of two different algorithms on the same problem.  A dependent t-test 

compares two groups that are related or from the same source. For an instance, 

comparing the results obtained from implementing the same algorithm on two different 

problems.  

 

In this work, an independent t-test was carried out because the performance of different 

heuristics were too compared. However, four common types of independent t-tests 

include; 
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i. Paired two samples for mean: The paired two samples for mean t-test is normally 

used when you are testing twice on the same subject. For an example, testing 

two scheduling solution methods on the same problem. The test shows whether 

the results from the two solution methods are significant or not.  

ii. Two samples assuming equal variance: This is used to test two groups to see if 

there is statistical significance or if the results may have occurred by chance. 

However, the test is applied, if there is an explicit information that the 

population variance of the two groups are equal. 

iii. Two samples assuming unequal variance. This test is used to determine whether 

there is a difference between two groups within the population. For an example, 

to test whether there is difference in two different solutions on a given problem. 

iv. Another test for means is called the Z-test. This is used where normal 

distribution is applied and is basically used when dealing with problems relating 

to large samples not less than thirty (n ≥ 30). 

 

However, the paired two samples for mean t-test was be adopted in this study. This is 

because there was no information about the variance of the objective function for the 

solution methods.  

 

Furthermore, to explore t-test, the value of the probability (α) is required. This depends 

on the confidence level and whether a one-tailed or a two-tailed test is used. The 

confidence level describes the uncertainty of a sampling method. Often, researchers 

choose 90%, 95%, or  99% confidence levels, but 95% level  is commonly used and it 

was adopted in this work. The 95% confidence level means that there is a 95% chance 

that the calculated means contains the true population mean. 

 

 A one-tailed test and a two-tailed test are alternative ways of computing the statistical 

significance between two set of parameters. A two-tailed test is used to test the 

significance of a claim of no differences between two set of parameters. In other words, 

a two-tailed test will test if the mean of the objective value obtained from a heuristic AA 

is significantly not different from that obtained from a heuristic BB (one direction). In 

contrast, a one-tailed test is used if deviation in only one direction is considered possible. 

This implies that a one- tail test will only test if the mean of the objective value obtained 

from a heuristic AA is significantly greater than that obtained from a heuristic BB.  At 



39 
 

the 95% level, for a one-tailed test, the α value is 5% = 0.05. Thus, it is written as 𝛼0.05 

. For a two-tailed test, the α-value is 0.1 (0.05×2) (Oyawale, 2006). Thus, it is written as 

𝛼0.01 

 

The interpretation using the 𝛼0.05 for a one-tailed test in a minimization problem is stated 

as follows: 

i. If the 𝛼0.05  value is greater than 0.05 (p > 0.05), then the two solution 

methods are not significantly different from each other.  

ii. If the 𝛼0.05  value is less than 0.05 (p < 0.05), then the two solution methods 

are significantly different from each other. The method with the lower 

objective function is the superior method. 

 

Similarly, for a two-tailed test in a minimization problem, the 𝛼0.05 -value can be 

interpreted as follows: 

iii. If the 𝛼0.05  value is greater than 0.1 (p > 0.1), then the two solution methods 

are not significantly different from each other. 

iv. If the 𝛼0.05  value is less 0.1 (p < 0.1), then the two solution methods are 

significantly different from each other. The method with the lower objective 

function is the superior method. 

 

A confidence level of 95% and a probability value of 0.05 (one-tailed test) would be 

adopted in this work. 

 

3.3.4 The optimal count (OC) test 

This test counts the number of times the heuristics achieve optimality. In other words, 

the number of times the heuristics yield the same value of the objective function as the 

BB method in the fifty instances for small problem sizes. While the A.R test measures 

the differences between the optimal and the heuristics results, the t-test shows the 

significance of the observed differences. However, the trends of performance of the 

heuristics as the problem sizes increases as well as the number of times the heuristics 

yield optimal in the fifty problem instances for small problem size are reveal by the 

optimal count test. 
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3.3.5 Consistency test and the ranking of the solution methods 

In order to assess the consistency of the proposed heuristics against other implemented 

solution methods, the number of times each of the methods yields the best results in the 

fifty problem instances were computed and expressed in percentages. All the solution 

methods for each problem class was also ranked in the order of their effectiveness and 

efficiency. 

 

3.4 The Model Implementation for Real-Life Problems 

To further demonstrate the utility of the proposed heuristics, the solution methods were  

applied on real life data.  The real life problems were obtained from the painting section 

of the VAL-VAL Auto Clinic, Ibadan, Oyo State, Nigeria. 

The painting section of the VAL-VAL Auto-clinic Engineering limited located at Ibadan 

was visited. The unit carries out the following activities; 

i. Spraying  of vehicles, 

ii. Drying and baking of vehicles, and 

iii. Coordinating the rentage of the baker (oven). 

 

The unit is equipped with a baking oven, where spraying is  carried out. The oven serves 

as the processor, while the vehicles are the jobs. The sprayed vehicle (job) is kept inside 

the oven for certain period of time for proper drying. This is the processing time.  The 

oven can only house a car at a time. This is the processor capacity. Some auto repair 

shops and automobile dealers also rent the baker for specified period of time. Therefore, 

the job schedule on the baker includes the vehicle brought by customers to the VAL-

VAL Auto-Clinic Engineering limited and the vehicle brought by other firms intended 

to rent the oven. 

 

3.4.1 Data collection 

Data were collected from the firm using the customer detail forms and by interviewing 

the workshop manager. A customer details form of an automobile firm usually contain 

information about the vehicle release date. The following pieces of information would 

be gathered from the firm. 

i. The release date: The date the job (vehicle) was brought to the firm or the date 

any firm intended to rent the oven registered their intention was used as the 
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release date of the job. It were assumed that scheduling starts from the 1st day 

of the Month. Thus, if a vehicle was received on the 6th of May 2015. The 

release date is 6. Therefore, the release dates values would ranges from 1-31 

inclusive depending on the month of the year. 

ii. The processing time: The processing time of job is the time or day the vehicle 

is expected to stay in the baker or the number of day(s) the firm that rents the 

baker intends to spend.  

iii. The due date: The date the firm gives to the customer that the job would be 

completed is the due date. For instance, if a vehicle is brought to the firm on 

30th of May, 2015, and the firm promises the customer to pick the vehicle on 

3rd of June, 2014. Then, the release date is 30, and the due date is 34.   

 

3.5 The MATrix LABoratory (MATLAB) 

The MATLAB is a powerful computing system for handling calculations involving 

scientific and engineering problems. The name MATLAB stands for MATrix 

LABoratory, because the system was designed to make matrix computations easy. 

However, the flexibility of MATLAB environment makes it easy to execute algorithms 

development, system analyses, differential equations, mechanical system analyses and 

electric circuits modelling.  

 

One of the advantages of MATLAB over some other computer programming languages, 

like C++, Fortran, VISUAL basic, etc. is that it can be used interactively. This means if 

some commands are typed for executions at the MATLAB command window, the 

results are given immediately. Therefore, this work will provide a standard code and 

layout to generate any number of problem instances with unlimited number of jobs. The 

general codes to execute the unlimited problem instances from any algorithm was also 

provided.  
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CHAPTER FOUR 

MODEL DEVELOPMENT 

4.1 Introduction 

The effectiveness and the efficiency must be taken into consideration while designing a 

scheduling heuristic. Therefore, a scheduling heuristic may not necessarily involve 

numerous computational steps once it achieves a level of acceptable accuracy. This is 

measured through comparative analyses against the currently explored models. 

Therefore, the key to developing a good heuristic for a given problem is the clear 

understanding of the problem and not the numbers of the computational steps. Having 

this in mind, heuristics are then developed for solving the problems considered in this 

work. Therefore, this chapter discusses the development of heuristics for the Classes 1, 

II and III problems. The need for normalization as well as the corollary utilized for the 

normalization of the Classes II and III problems are also enumerated. Furthermore, for 

all the problem classes, the solution methods selected from the literature for comparative 

analyses are discussed.  

 

4.2  The Scheduling Problem of Minimizing the 2TRD 

The scheduling problem of minimizing the total tardiness on single processor with non-

zero release dates was explored as the Class 1 of this study. The analysis of the problem 

as well as the proposed heuristics are now discussed: 

 

4.2.1 Problem definition 

Given a single processor scheduling problem, where a set of n jobs have to be sequenced 

on a processor to minimise the total tardiness. Assuming that only one job can be 

processed at a time and that the problem is deterministic. Thus, the release dates (𝑟𝑖), the 

processing time (𝑝𝑖) and the due dates (𝑑𝑖) of every job (𝐽𝑖) are known with certainty. 

The time the processing of a job, i starts on the processor, designated as 𝑆𝑖, possesses a 

property defined by:  

𝑆𝑖  ≥  𝑟𝑖                                                                                                                (4.1) 
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The completion time (𝐶𝑖) of a job i is defined as:  

 

Ci =  Si + 𝑝i                                                                                                       (4.2) 

 where: 

𝑆𝑖 =   𝐶𝑖−1  𝑜𝑟 𝑟𝑖 

For i = 1 

Si =   𝑟𝑖 

Ci = pi + ri                     (4.3) 

 

For job in position i +1 (job that succeeded the job in position i), 

 

If Ci >  𝑟i+1 

Ci+1 = Ci + 𝑝i+1      (4.4) 

Si+1 =   𝐶𝑖          (4.5)  

If Ci ≤  𝑟i+1          

Ci+1= ri+1  + Pi+1            (4.6) 

 Si+1 =   𝑟𝑖                                                                                           

 

A job is said to be late or tardy if it is completed after its due date.  

The tardiness is given by: 𝑇𝑖= 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)}                                                           (4.7) 

The total tardiness is (𝑇𝑡𝑜𝑡): ∑ 𝑇𝑖
𝑛
𝑖=1  = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)}  𝑛

𝑖=1                                     (4.8) 

 

4.2.2 Materials and methods  

The methods adopted in this study involves proposing and implementing two new 

heuristics to solve the problem. Two heuristics were also selected (based on their 

performance) from the literature to solve the problem. In addition, the BB procedure was 

also implemented for small and medium-sized problems. Comparative analyses was then 

carried out on all the implemented solution methods.  
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4.2.3 Selected solution methods from the literature 

Among the solution methods found in the literature, the following heuristics were 

selected for implementation. The solution methods are now outlined; 

i. The Minimum Slack Time (MST) Rule: The MST rule schedules jobs in the order 

of increasing slack time. The slack time (𝑆𝑇) of a job j is given by: 

 

 𝑆𝑇  =  𝑎𝑗(𝑡)  − 𝑃𝑗                 (4.9) 

where: 

𝑆𝑇  is the slack time, 

𝑝𝑗  is the processing time of job j, 

𝑎𝑗(𝑡) is the allowance of the job j.  

The allowance (𝑎𝑗(𝑡)) of a job j is given by:  

 𝑎𝑗(𝑡) = 𝑑𝑗–  𝑡         (4.10) 

where: 

𝑑𝑗 is the due date of job j, and 

t is the sequencing time which can either be the completion time of the job at position 

(j-1) or the release date of job j.  

ii. The Modified Due Date (MDD) Rule: The MDD rule at any time schedules the 

next job from the set of all unscheduled jobs ‘U’ with the smallest priority index 

(i). The priority index is given by: 

i = {𝑚𝑎𝑥{𝑡 + 𝑝𝑖, 𝑑𝑖}}                  (4.11) 

where:  

t is the starting time of the next unscheduled job i (i  U) which can either 

be the completion time of job in position i-1 or the release date of job i, 

𝑝𝑖  is the processing time, and 

𝑑𝑖  is the due date. 

If there are only two jobs j and k to be scheduled at a time t, job j will precedes 

job k if  {𝑚𝑎𝑥{𝑡 +𝑝𝑗,  𝑑𝑗}} {𝑚𝑎𝑥{𝑡 + 𝑝𝑘, 𝑑𝑘}}. 
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However, the MDD rule does not consider two jobs at a time when there are more than 

two unscheduled jobs. It considers all the available jobs, computes their priority indices 

(i) and chooses the job with the least priority index. 

iii. The Shortest Processing Time (SPT) Rule: The SPT rule schedules jobs in the 

order of non-decreasing processing time. 

iv. The Early Due Date (EDD) Rule: The EDD rule schedules jobs in the order 

of non-decreasing due date. 

 

4.2.4 Proposed solution methods 

Two heuristics; named heuristicI (HeuI) and heuristicII (HeuII) are proposed for this 

problem. The solution methods are now described.  

 

i.  HeuI  

In order to minimise the total tardiness of jobs with non-zero release dates on a single 

processor, three parameters are involved; the processing time, the release date and the 

due date. In any schedule, the effects of the parameters are significant at the beginning, 

while towards the tail end the effect of both the processing times and the due dates are 

dominant. However, as the length of the schedule increases, the processing time is the 

most dominant parameter.  In this regard, the HeuI algorithm combines the EDD with 

the SPT to obtain a schedule. The algorithm is as follows: 

 

Initialization 

JobSet A = [ J1, J2, J3, . . . , Jn], set of given jobs 

 

JobSet B = [0], set of scheduled jobs 

 

JobSet C = [ J1’, J2’, J3’, . . .  , Jn’], set of unscheduled jobs, Jj’ = Jj 

 

JobSet D = [ J1’, J2’, J3’, . . . , Jn’], set of unscheduled jobs, Jj’ = Jj 

 

JobSet E = [ J1’, J2’, J3’, . . . ,Jn’], set of unscheduled jobs, Jj’ = Jj 

 

JobSet U = [ J1’, J2’, J3’, . . . ,Jn’], set of unscheduled jobs, Jj’ = Jj 
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The steps now follow; 

STEP 1:  Arrange JobSet A in the order of non-decreasing processing times and put 

same in JobSet C. If there is a tie, break arbitrarily 

 

STEP 2: Arrange JobSet A in the order of non-decreasing due date and put same in 

JobSet D. If there is a tie, break arbitrarily 

 

STEP 3: Compute the tardiness of each of the jobs in the JobSet C and the JobSet D 

 

STEP 4: Combine the two schedules by scheduling the job in the same level and with 

the lower tardiness. If there is a tie, break the tie with due date.  The resultant schedule 

is called JobSet E 

 

STEP 5: Check if any job exists more than once in the JobSet E. If yes, remove the 

repeated job from the back position. Compute the length of the resultant schedule. The 

resultant schedule is called the JobSet U. Otherwise, JobSet E is renamed JobSet U 

 

STEP 6: If the length of the JobSet U is equal to length of the JobSet A. Go to step 9. 

Else, go to step 7 

 

STEP 7: Subtract JobSet U from JobSet A to obtain the jobs that have not been 

scheduled. The jobs constitute JobSet H 

 

STEP 8: Arrange JobSet H at the back of JobSet U in the order of the due date 

 

STEP 9: Compute the total tardiness of the JobSet U. If the total tardiness of JobSet U 

is less than that of JobSet C, JobSet C is the JobSet B, otherwise JobSet U is the JobSet 

B. 

 

STEP 10: Compute the total tardiness of the required schedule (JobSet B). 

 

STEP 11: Stop. 
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ii. HeuII 

This is a modification of the HeuI. The two heuristics are based on the same principle. 

However, the step 1 in the HeuI is replaced by arranging the JobSet A in the order of the 

sum of the processing times and the release dates. 

 

4.2.5 Application of the BB to solve the problem 

The BB procedure implemented for this problem is described as follows: 

The frontier search method was explored to branch, while the dynamic DMDD heuristic 

was used to bound the branching tree. The problem p(0) was partitioned into n 

subproblems, p(1), p(2), . . . , p(n), by assigning the first position in the sequence to each 

of the nodes in the first level of the branching tree. Thus, the p(1) is the same problem, 

but with job 1 fixed in the first position; the p(2) is similar, but with job 2 fixed in the 

first position, and so on. 

 

Let s denote a partial sequence of jobs from among the n jobs originally in the problem. 

Also, let  𝑗𝑠  denote the partial sequence in which s is immediately preceded by job j. 

Therefore, the completion time (Cj) of the sequence js is given by;  

 

For j = 1 

Cj = pj + rj           (4.12) 

For job in sequence j+1 i:e  job s 

 

𝐶𝑗+1 = {
𝐶𝑗 + 𝑝𝑗+1 , 𝐶𝑗 >  𝑟𝑗+1

𝑟𝑗+1 +  𝑝𝑗+1,  𝐶𝑗 ≤   𝑟𝑗+1
               (4.13) 

 

Let Q(s) represent some subproblems at level k in the branching tree, where k ≤ n. These 

subproblems will be the original problems at that level with the different jobs assigned 

at the first positions in each node at the level. Associated with Q(s) is a value, Vs, which 

is the contribution of the assigned jobs in each level to the total tardiness. That is, 

 

 𝑉𝑠 = ∑ 𝑇𝑗𝑗∈𝑠′   = ∑ (max{0,  𝐶𝑡(𝑗𝑠) −  𝑑𝑠})𝒔
𝒋=𝟏              (4.14) 
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This value of Vs is calculated for all the nodes in each level and compared to the lower 

bound obtained from the DMDD heuristics (for the whole problem). As the level 

progresses, the value of the lower bound obtained from each node increases. However, 

at any level, k, any node whose value of Vs is greater than the heuristic value is discarded. 

The process continues until all the jobs are scheduled. 

 

The bounding process provides a means for curtailing and reducing the number of nodes 

to be exhausted in order to improve the efficiency of the procedure. The bounding 

procedure calculates a lower bound by applying the DMDD heuristic at the outset and 

compares the value to the objective function obtained from all the branches in all the 

nodes at each level. 

 

4.3   Bi-criteria Scheduling Problems 

The bi-criteria scheduling problem of minimizing the LCOF of total tardiness and total 

flowtime on a single processor with zero release dates was explored as the Class II. The 

non- zero release dates variant of the Class II was named as the Class III. The problems 

analyse, the proposed normalization procedure as well as the proposed heuristics are 

now discussed. 

 

4.3.1 Problem definition 

Given the following for a single processor scheduling problem:  

i. A set of n jobs; J1 , J2 , …, Jn   

ii. The processing time of each job, Pi, and 

iii. The due date of each job, di . 

 

The job tardiness 𝑇𝑖, is defined by; 

 𝑇𝑖 = max {0 ,(𝐶𝑖 − 𝑑𝑖)}                                                                                                      (4.15)        

The total tardiness (Ttot) is thus defined as:  

Ttot =  ∑ 𝑇𝑖
𝑛
𝑖=1  = ∑ 𝑚𝑎𝑥 {0, (𝐶𝑖 − 𝑑𝑖)}  𝑛

𝑖=1                                                                      (4.16)                             

Similarly, the flowtime, 𝐹𝑖 of job is defined by: 

𝐹𝑖 = 𝐶𝑖 − 𝑟𝑖                                                                                                                      (4.17) 

The total flowtime (Ftot) is given by: 
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Ftot = ∑ 𝐹𝑖
𝑛
𝑖=1  = ∑ (𝐶𝑖 − 𝑟𝑖)  𝑛

𝑖=1                                                                                         (4.18) 

For the Class II, the release dates of all the jobs is zero, thus  

 Ftot: ∑ 𝐹𝑖
𝑛
𝑖=1  = ∑ 𝐶𝑖 = 𝐹𝑖 + 𝐹2 + 𝐹𝑖3+ .  .  . + 𝐹𝑛  𝑛

𝑖=1                                                            (4.19) 

Using the notations of Graham et al. (1979), the Class II problem is represented as: 

  1 | | (∑ 𝑇𝑖
𝑛
𝑖=1 , ∑ 𝐹𝑖

𝑛
𝑖=1 )                                                                                                   (4.20) 

Similarly, the Class III problem is represented as: 

1 |𝒓𝒊| (∑ 𝑇𝑖
𝑛
𝑖=1 , ∑ 𝐹𝑖

𝑛
𝑖=1 )             (4.21) 

Using the simultaneous approach, the LCOF is defined as:  

LCOF = (𝛼 ∑ 𝑇𝑖
𝑛
𝑖=1  +  𝛽 ∑ 𝐹𝑖

𝑛
𝑖=1 )                                                                                     (4.22) 

where: 

𝛼 is the relative weight of the total flowtime, and  

𝛽 is the relative weight of the total tardiness. 

Also, the sum of the relative weights of the two criteria is equal to 1.  

  𝛼 +  𝛽 = 1                                                                                                                        (4.23) 

 

Therefore, the LCOF consists of the sum of the relative weights of each objective 

multiplied by the value of the objectives (Akande et al., 2014). 

 

A bi-criteria problem can only be solved, if the values of ∝ and 𝛽 are known (Oyetunji 

and Oluleye, 2009). In this work, a case of the total tardiness criterion being as important 

as the total flowtime criterion is considered.  

Thus, 𝛼 =  𝛽 =  0.5 

Therefore;   LCOF = 0.5(∑ 𝑇𝑖
𝑛
𝑖=1  +  ∑ 𝐹𝑖

𝑛
𝑖=1 )                                                                   (4.24) 

 

However, the problems of skewness and dimensional conflict associated with the LCOF 

are tackled through normalization proposition.   

 

4.4   Normalization 

A composite objective function will be biased or skewed towards one of the criteria if 

the value of that criterion is a multiple of the other. Similarly, if there is dimensional 

conflict, then the resultant composite function is said to be unbalanced. To obtain a 
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balanced and an unbiased composite function, normalization is required. Oyetunji and 

Oluleye (2009) showed that the normalized value of any criterion in a multicriteria 

problem can be expressed as: 

 

 𝑋𝑁 = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                                                           (4.25)               

where: 

𝑋𝑚𝑖𝑛 is the minimum possible value of the criterion X, 

𝑋𝑚𝑎𝑥 is the maximum possible value of the criterion X, 

X is the particular value of the criterion X obtained from a solution method, and 

𝑋𝑁 is the normalized value of the criterion X. 

Therefore, the problem is to determine the minimum and the maximum possible values 

of each criterion. These values are called the extreme values. 

 

4.4.1 The extreme values 

 For a minimization problem, the minimum possible value of a scheduling criterion 

represents the best value the criterion can attain, irrespective of the solution method 

adopted. On the other hand, the maximum possible value of a scheduling criterion 

represents the worst value the criterion can attain, irrespective of the solution method 

adopted.  These values are called the extreme values.  

 

The two objectives (the total flowtime and the total tardiness) considered in this work 

have the same unit, their values, especially at the beginning of a very good schedule 

(where total tardiness is likely to be zero or very small), may not be in the same range. 

Thus, the value of each of the objectives were normalised to the range of [0, 1], thereby 

yielding dimensionless quantities/variables as in Cochran et al. (2003), (Oyetunji, 2011).  

Oyetunji and Oluleye (2009) proposed some equations to determine the extreme values 

of some objective functions with non-zero release date constraint. This is shown in Table 

4.1. 
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 Table 4.1: The maximum and the minimum possible values of the objectives 

Objectives Maximum Values  Minimum Values 

Ctot n(Rmax) + 𝑛𝑃1 +  (𝑛 − 1) 𝑃𝑛−2 ± 

.  . . ∓1(𝑃𝑛)   = n(Rmax) + 𝑛𝑃1 + 

(𝑛 − 𝑖)𝑃(𝑛−𝑖−1) + 1(𝑃𝑛)    

where i = 1 : n-2 

𝑛𝑃1 +  (𝑛 −

1)𝑃𝑛−2+. . . +1(𝑃𝑛) = 𝑛𝑃1 +

(𝑛 − 𝑖)𝑃(𝑛−𝑖+1) + 1(𝑃𝑛)    

where i = 1 : n-2 

Ftot n(Rmax) + 𝑛𝑃1 +  (𝑛 − 1)𝑃𝑛−2 + 

+1(𝑃𝑛) − n(Rmin) =  

𝑛𝑃1 + (𝑛 − 𝑖)𝑃(𝑛−𝑖+1) +  

1(𝑃𝑛) − n(Rmin) 

𝑛𝑃1 + (𝑛 −

1)𝑃𝑛−2+ . . . +1(

𝑃𝑛)−n (Rmax)= 𝑛𝑃1 + (𝑛 −

𝑖)𝑃(𝑛−𝑖+1) + 1(𝑃𝑛) −

n(Rmax) 

Ttot 
∑ 𝑑𝑗

𝑛

𝑗=1

− (Ctot)𝑚𝑎𝑥 
0 

Source: Oyetunji and Oluleye (2009): Assessing solution methods to mixed multi 

objectives scheduling problems. 
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However, the equations in Table 4.1 do not apply to a static system in which the release 

dates of all the jobs is zero. To solve this problem, a new corollary was proposed. 

 

4.4.2 The proposed corollary 

This corollary is based on the fact that for single processor scheduling problems, optimal 

or near-optimal solutions exist for some single criterion, scheduling problems with zero 

release dates. For instance, the SPT algorithm yields an optimal solution for the total 

flow time, total completion time, average flow time, among others. Also, the EDD and 

Moore algorithms yield optimal solutions for the maximum tardiness and number of 

tardy jobs, respectively. 

                            

The proposed corollary states that in order to determine the extreme values of a 

scheduling criterion for which a known optimal schedule or solution exists, the 

schedules corresponding to the two extreme values are notional. 

 

PROOF: The validity of the corollary falls under two arguments; 

i. Notional schedule is impossible and all the jobs corresponding to the extreme 

points must be represented on the Gantt chart (argument against the corollary) 

ii. A notional schedule is possible with only one job corresponding to the extreme 

points represented on the Gantt chart (argument in favour of the corollary). 

 

In order to validate the corollary, the two arguments were tested for a scheduling 

problem of minimizing the total flowtime on a single processor with zero release dates. 

The problem is solved optimally by the Shortest Processing Time (SPT) algorithm. 

 

4.4.3 Argument against the corollary  

The extreme values of the objective were determined using the argument against the 

corollary as follows; 

i. The minimum possible total flowtime 

 The total flowtime is the sum of the flowtime. This is given as 

∑ 𝐹𝑡
𝑛
𝑖=1   = 𝐹1  +   𝐹2 +  𝐹3   + 𝐹4 + .  .  . +𝐹𝑛                             (4.26) 
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The flowtime is the sum of the waiting time (wi) and the processing time (pi). This is 

given as; 

𝐹𝑖= 𝑤𝑖 + 𝑝𝑖                                                                                                    (4.27) 

The minimum possible value of the flowtime is the flowtime obtained when the waiting 

time is zero. However, the waiting time can only be zero for job scheduled in the first 

position. Furthermore, since only one job can be processed at a time, then it follows that 

for jobs scheduled in position 2, 3, 4,….n. the waiting time will always be greater than 

zero. 

 

The minimum flowtime can thus be analyzed as follows; 

For job scheduled in position 1, the minimum possible flowtime is given by 

 𝐹𝑖= 𝑝1      (because, w = 0)                                                                          (4.28) 

For job scheduled in position 2, the minimum possible flowtime is given by 

 𝐹𝑖=  𝑝1 +  𝑝2  (because, w = 𝑝1)                                                                 (4.29) 

For job scheduled in position 3, the minimum possible flowtime is given by; 

 𝐹𝑖=  (𝑝1 +   𝑝2)  + 𝑝3                                                                                      (4.30) 

Therefore, for any job schedule in position, k, the waiting time is given by; 

  𝑤𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1                                                                                             (4.31) 

𝑘 = 2,3, … , 𝑛 

For k = 1, 𝑤𝑘 = 0 

The minimum possible total flowtime,  

𝐹𝑘 = 𝑝1   + {∑ 𝑝𝑖 +   ∑ 𝑝𝑖  
𝑛
𝑖=2

𝑘−1
𝑖=1 }                                                      (4.32) 

For 𝑘 = 2,3, … , 𝑛.   

Where 𝑝1 is the flowtime of the first scheduled job. 

The minimum possible value of the total flowtime,  

𝐹𝑘 = 𝑝1   + {∑ 𝑝𝑘 +   ∑ 𝑝𝑖  
𝑛
𝑖=2

𝑘−1
𝑖=1 }                                                (4.33) 

 

ii. The maximum possible total flowtime 

The maximum possible value of the flowtime is achieved by maximizing the waiting 

time. The maximum waiting time will depend on the position of the job in the schedule. 
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The waiting time for the job in the position  k is given by; 

𝑤𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1         For     𝑘 = 2,3, … , 𝑛                                                                (4.34) 

The waiting time is maximum, when the job is scheduled in the last position (k = n),  

The maximum waiting time for the job in the last position, n, is given by; 

𝑤𝑘 = ∑ 𝑝𝑖
𝑛−1
𝑖=1                                                                                                         (4.35) 

The maximum waiting time for the job in the position k-1 is given by; 

𝑤𝑘 = ∑ 𝑝𝑖
𝑘−2
𝑖=1                  (4.36) 

The maximum waiting time for the job in the position 1 is given by: 

 𝑤𝑘 = 0                                                                                                                                  (4.37) 

Thus, the flowtime for any such job i scheduled to positions 2, 3, . . . , n is given by: 

𝐹𝑘 = 𝑤𝑘 + 𝑝𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1 + 𝑝𝑘                                                                           (4.38) 

For k = 2, 3, 4, . . . , n                       

Therefore, the maximum possible value of the total flowtime is given as: 

       𝑭𝒕𝒐𝒕 = 𝒑𝟏 + ∑ {∑ 𝒑𝒊 + 𝒑𝒌
𝒌−𝟏
𝒊=𝟏 }𝒏

𝒌=𝟐                                                             (4.39) 

 

4.4.4 Argument in favour of the corollary  

To validate the corollary, the use of notional schedules must be justified. From 

equation 4.22 discussed above, the normalized value of scheduling criteria is defined 

as; 

 

 𝑋𝑁 = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                                         (4.22) 

 

The equation (4.22) is similar to equation of slope of a straight line AB shown by 

Figure 4.1. 
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Figure 4.1: The slope of a straight line graph 
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However, consider some notional values that are not part of the data used to plot the 

graph in Figure 4.1 and in such a way that can extend the minimum point (A) to point 

(C) and the maximum point (B) to point (D) on the graph as shown in Figure 4.2. Then 

by analysis, the slope of the graph remains unchanged, that is slope 1 = slope 2 (This 

simply means the normalized value remain unchanged), though the minimum and the 

maximum values on the graph change. 
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     Figure 4.2: The slope of a straight line graph with notional extreme points. 
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Therefore, the extreme values of flowtime are now determined using the argument in 

favour of the corollary as follows; 

i. The minimum possible total flowtime 

The total flowtime 

∑ 𝐹𝑡
𝑛
𝑖=1   = 𝐹1  +   𝐹2 +  𝐹3   + 𝐹4 +.  .  . +𝐹𝑛                (4.40) 

Similarly, the flowtime is the total time a job spends in the shop. When the release date 

of a job is zero, the flowtime is the sum of the job waiting time (wi) and the processing 

time (𝑝𝑖) of the job. 

𝐹𝑖= 𝑤𝑖 + 𝑝𝑖                                                                                                                 (4.41) 

The waiting time of a job can only be zero, if the job is scheduled in the position 1. 

Therefore, the minimum waiting time (besides the real waiting time from the SPT 

schedule) is zero and it can only be obtained by assuming that all the jobs are scheduled 

in position 1 (notional indeed since it is not real to schedule all the jobs in position 1 

simultaneously). Also, the notional assumption is necessary since it is impossible to find 

any real schedule better than the optimal (the minimum flowtime from the SPT). 

Therefore, the minimum waiting time is zero. wmin = 0                                                  (4.42) 

Therefore, the minimum possible flowtime, 𝐹𝑚𝑖𝑛= 𝑃𝑖                                             (4.43)                        

The minimum possible total flowtime is given by:   𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝑝𝑖

𝑛
1                          (4.44)   

 

ii. The maximum possible total flowtime 

For any job scheduled in position, k, the waiting time is given by; 

𝑤𝑘 = ∑ 𝑝𝑖
𝑘−1
𝑖=1                        𝑘 = 2,3, … , 𝑛                                                           (4.45) 

Therefore, the waiting time is maximum when k = n. Where k is the job position and n 

is the number of job. Thus, the waiting time is maximum when job is scheduled in the 

position k. The maximum waiting time of each of the job is given by: 

 𝑤𝑚𝑎𝑥 = ∑ 𝑝𝑖
𝑛−1
𝑖=1                                                                                          (4.46) 

Therefore, for consistency purpose, a notional maximum waiting time is also obtained 

by assuming that all the jobs are scheduled in the last position. 

The maximum possible value of the flowtime of a job is given by; 

  ∑ 𝑝𝑖
𝑛−1
𝑖=1 +  𝑝𝑖                                                                                                              (4.47) 
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The maximum possible total flowtime of all the jobs in the schedule is given by;  

𝑛{∑ 𝑝𝑖
𝑛−1
𝑖=1 }  +  ∑ 𝑝𝑖

𝑛
𝑖=1                                                                              (4.48) 

Equation (4.48) contains two components; the waiting time component and the process 

time component. 

The waiting time component = 𝑛{∑ 𝑝𝑖
𝑛−1
𝑖=1 }                                                              (4.49) 

In the waiting time component, it was assumed that the maximum waiting time is equal 

for all the jobs. 

The processing time component = ∑ 𝑝𝑖
𝑛
𝑖=1                                                                (4.50) 

In the processing time component, though the maximum possible waiting time is 

associated with each of the processing time, the processing time of each of the job 

remains unchanged.  

 

Furthermore, the following points were found to support the corollary: 

i. For a minimization scheduling problem for which a known optimal solution exists, 

there exists no real schedule that can yield a better result than the optimal solution. 

For an instance, there is no real schedule (not notional) better than the SPT algorithm 

schedule (optimal) for the scheduling problem of minimizing the total flow time of 

jobs with zero release dates. 

ii. If the argument (i) is valid, then any other minimum possible flow time can only be 

a notional schedule. Thus, the corresponding maximum possible flow time must also 

be a notional schedule for consistency. 

iii. Analysis with examples reveal that using the argument against the corollary, the 

extreme values and the value obtained from a near optimal heuristic upon which the 

normalization was carried out are all the same. Thus, the normalized value is 

indeterminate (0/0).  

(See Appendix IV, for illustrative example to demonstrate the need for normalization 

and the validity of the proposed normalization procedure) 

These points also apply to other scheduling problems for which optimal solutions exist. 

Therefore, the corollary is valid. The extreme values of the following criteria are 

determined using the corollary: 
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a. The completion time 

The completion time (Ci) of job i is defined as: 

  𝐶𝑖  =  𝐹𝑖 + 𝑟𝑖                                                                                                                           (4.51)                                                                                                                 

Therefore, when the release date is zero, the flowtime is equal to the completion time. 

The SPT algorithm also yields optimal solution for scheduling problem of minimizing 

the total completion time under static condition. Thus, the extreme values of the 

completion time are equal to that of the flowtime. 

The minimum possible value of total completion time is given by: 

 𝐶𝑡𝑜𝑡
𝑚𝑖𝑛 = 𝐹𝑡𝑜𝑡

𝑚𝑖𝑛 = ∑ 𝑝𝑖
𝑛
1                        (4.52) 

The maximum possible value of total completion time is given by: 

 𝐶𝑡𝑜𝑡
𝑚𝑎𝑥 = 𝑛{∑ 𝑝𝑖

𝑛−1
𝑖=1 }  +  ∑ 𝑝𝑖

𝑛
𝑖=1                                                          (4.53) 

 

b. The total tardiness 

A job is said to be tardy, if it is completed after its due date.  

Total tardiness is given by:  𝑇𝑡𝑜𝑡 =  ∑ 𝑇𝑖
𝑛
𝑖=1  = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)}  𝑛

𝑖=1                (4.54)      

Since the tardiness can never be negative, it implies that the minimum possible value 

of total tardiness, Tmin= 0. 

The total tardiness is maximum when the completion time is maximum since the due 

date is an independent variable.  

The maximum possible value of total tardiness is given by: 

  𝑇𝑡𝑜𝑡
𝑚𝑎𝑥 =  (𝐶𝑡𝑜𝑡

𝑚𝑎𝑥 − ∑ 𝑑𝑛
𝑖=1 𝑖

)                                                                                    (4.55)  

 

c. The total lateness 

Lateness is the difference between the completion time and the due date of the job. 

Lateness is given by;  Li = (Cidi)                                                                              (4.56) 

Lateness is minimum when the completion time is minimum and it is maximum when 

the completion time is maximum because the due date is an independent variable. Thus, 

the extreme values of lateness are given by; 

Minimum possible value of Total Lateness: 𝐿𝑡𝑜𝑡
𝑚𝑖𝑛  = (𝐶𝑡𝑜𝑡

𝑚𝑖𝑛 −  ∑ d𝑛
𝑖=1 i

)                 (4.57)                  

Maximum possible value of Total Lateness: 𝐿𝑡𝑜𝑡
𝑚𝑎𝑥  = (𝐶𝑡𝑜𝑡

𝑚𝑎𝑥 ∑ d𝑛
𝑖=1 i

)                (4.58) 
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d. The number of tardy jobs 

Recall that a job is said to be tardy, if it is completed after its due date. Evidently, the 

minimum possible number of tardy jobs is zero while the maximum possible number of 

tardy jobs is the total number of jobs. 

 

e. The number of late jobs 

This measures the number of jobs that are completed after the due dates. The sum of the 

number of late jobs and the number of early jobs is less than or equal to the total number 

of jobs. Thus when the number of late jobs is maximum, the number of early jobs is 

minimum (zero) and vice versa. Similarly, it is obvious that the minimum and maximum 

possible values of average number of tardy jobs (NT avg ) and average number of early 

jobs (NEavg ) criteria are 0 and 1, respectively.   

 

Similarly, the minimum possible number of on time jobs (jobs completed on the given 

due date) is zero while the maximum possible number of On time jobs is the total number 

of jobs. Table 4.2 shows the equations to determine the extreme values of some 

performance measures. 
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Table 4.2: The extreme values of some objective functions under static condition. 

 

 

 

 

 

 

 

 

 

 

 

Objective function minimum value           maximum value 

The total flowtime 
∑ 𝑃𝑖

𝑛

1

 𝑛 {∑ 𝑃𝑖

𝑛−1

𝑖=1

}   +   ∑ 𝑃𝑖

𝑛

𝑖=1

   

 

The total completion time 
∑ 𝑃𝑖

𝑛

1

 𝑛 {∑ 𝑃𝑖

𝑛−1

𝑖=1

}   +   ∑ 𝑃𝑖

𝑛

𝑖=1

   

 

The total tardiness 0 
𝐶𝑡𝑜𝑡

𝑚𝑎𝑥 − ∑ (𝑑𝑖)  

𝑛

𝑖=1

 

The total lateness 
𝐶𝑡𝑜𝑡

𝑚𝑖𝑛∑ 𝑑𝑖

𝑛

𝑖=1

 𝐶𝑡𝑜𝑡
𝑚𝑎𝑥 − ∑ (𝑑𝑖)  

𝑛

𝑖=1

 

The total earliness 
∑ 𝑑𝑖

𝑛

𝑖=1

− 𝐶𝑡𝑜𝑡
𝑚𝑎𝑥 (∑ 𝑑𝑖

𝑛

𝑖=1

𝐶𝑡𝑜𝑡
𝑚𝑖𝑛) 

The total number of tardy jobs 0 N 

The total number of late jobs 0 N 

Average number of tardy jobs 0 1 

Number of on time jobs 0 N 
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Therefore, once the normalized value of each criterion is known, the normalized 

composite objective function of the multicriteria problem is given by: 

 

𝑁𝑇𝐿𝐶𝑂𝐹 =   0.5 ( 𝑁𝑇𝑋  +   𝑁𝐹𝑌)                                                                             (4.59) 

where: 

𝑁𝑇𝐿𝐶𝑂𝐹 is the normalized total composite function, 

𝑁𝑋 is the normalized value of criterion X, and 

𝑁𝑦 is the normalized value of criterion Y. 

The value of 𝑁𝑇𝐿𝐶𝑂𝐹 will be used to assess the performance of the solution methods. 

 

4.5 Solution Methods to the Bi-criteria Problems 

The method used in this study involves implementation of the GAlg and the BB for the 

Class II and III problems. The heuristic A and heuristic B from the literature were also 

implemented for the Class II problem. For the Class III problem, the dynamic MDD 

heuristic was also implemented since no direct heuristic was found in the literature. Two 

heuristics were proposed for both classes. 

 

4.5.1 Solution methods from the literature 

The heuristics found in the literature for the Class II problem are outlined as follows; 

i. Heuristic A: The jobs are arranged in EDD. Then, if there is a string of consecutive 

tardy jobs at the end of the sequence, the tardy jobs are rearranged in SPT. 

ii. Heuristic B: The jobs are arranged in non-decreasing order of pi –di. Then, if there 

is a string of consecutive tardy jobs at the end of the sequence, the tardy jobs are 

rearranged in SPT. 

iii. The Generalized Algorithm (GAlg) for the Class II: The flowtime is minimised, 

using the SPT algorithm, while the total tardiness is minimised, using the DMDD 

rule.   

 

Similarly, the heuristics implemented for the Class III problem are outlined as follows; 

iv. The Generalized Algorithm (GAlg): The flowtime is minimised, using the KSAI 

algorithm (Oyetunji et al., 2012), while the total tardiness is minimised, using the 

Dynamic Modified Due Date (DMDD) algorithm (Naidu, 2002).  
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v. The DMDD Algorithm: Though the algorithm was proposed for static and dynamic 

variants of scheduling problems for minimizing the total tardiness. The 

performance of the DMDD algorithm as well as the sparsity of heuristics that solve 

the Class III problem compelled the use of the heuristic for the bicriteria problem. 

 

4.5.2 Application of the BB to solve the problem 

The frontier search method was explored to branch, while the GAlg heuristic was used 

to bound the branching tree. Let s denote a partial sequence of jobs from among the n 

jobs originally in the problem. Also, let j(s) denote the partial sequence in which s is 

immediately preceded by job j. Associated with j(s) is a value, 𝑉𝑠 which is the 

contribution of the assigned jobs in each level to the total normalized LCOF. The value 

of  𝑉𝑠 is calculated for all the nodes at each level and compared to the lower bound 

obtained from the GAlg heuristic. Then, the nodes with  𝑉𝑠 values higher than the lower 

bound value obtained from the GAlg are discarded, while other nodes are explored. The 

process continues until all the jobs are scheduled. 

 

4.5.3 The Proposed solution methods for the Class II problem 

Bi-criteria scheduling problems are NP-hard. Therefore, heuristic approach are desired 

to obtain good schedules. The two proposed heuristics; named HeuristicIII (HeuIII) and 

HeuristicIV (HeuIV) are now described. 

 

i. HeuIII :  

The logic behind this method is as follows; 

The total flowtime scheduling problem with zero release dates on single processor can 

be solved optimally by the SPT algorithm, while the MDD algorithm yields a near-

optimal solution for the equivalent problem but with the total tardiness as the 

performance measure. 

Each of the criteria can be expressed mathematically as follows; 

Total Tardiness (Ttot) : ∑ 𝑇𝑖
𝑛
𝑖=1  = ∑ 𝑚𝑎𝑥 {0 ,(𝐶𝑖 − 𝑑𝑖)}  𝑛

𝑖=1                                             (4.60)  

Total Flowtime (Ftot) : ∑ 𝐹𝑖
𝑛
𝑖=1  = ∑ 𝐶𝑖 − 𝑟𝑖  𝑛

𝑖=1                                                               (4.61)  

For 𝑟𝑖 = 0 

Total Flowtime (Ftot): ∑ 𝐹𝑖
𝑛
𝑖=1  = ∑ 𝐶𝑖  𝑛

𝑖=1                                                                         (4.62) 
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Analyses of the two algorithms reveal that the MDD algorithm favours the EDD rule at 

the beginning of the schedule, while towards the tail end of the schedule, the algorithm 

is biased towards the SPT rule. Thus, if the MDD and the SPT algorithms yield the same 

schedule, the two solutions are either optimal or near-optimal solutions. Furthermore, if 

the two solutions differ, the optimal schedule is a close neighbour to the schedules 

obtained. The algorithm is as follows: 

 

Initialization 

 

JobSet A = [ J1, J2, J3, …….Jn], set of given jobs 

 

 JobSet B = [0], set of scheduled job  

 

JobSet C = [ J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj  

 

STEP 1: Form JobSet D by arranging the JobSet A in the order of non-decreasing 

processing time. If there is a tie, break it with the due date 

 

STEP2:  Form JobSet E by exploring the modified due date algorithm.  

 

STEP 3: Compute the LCOF function; LCOF1 and LCOF2 for JobSet D and JobSet E, 

respectively. 

 

STEP 4: Set JobSet E as the required schedule (JobSet B), if LCOF2 is less than or equal 

to LCOF1, otherwise, set JobSet D as the required schedule 

 

STEP 5: Compute the objective function of the required schedule 

 

STEP 6: Stop.    

 

ii. HeuIV 

This algorithm is based on the two independent variables upon which the two criteria 

depend. These are the processing time and the due date. Furthermore, the SPT rule and 
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the MDD algorithm yield the optimal and the near optimal schedules for the total 

flowtime and the total tardiness, respectively. The SPT rule explored the completion 

time, the MDD algorithm utilized the modified due date (called the priority index). 

Therefore, the two independent variables; the completion time and the modified due date 

can also be linked to the LCOF of the two criteria. The completion time depends on the 

processing time only, while the modified due date is a function of both the processing 

time and the due date. Thus, the processing time is the dominant independent variable. 

In this regard, the processing time is used to schedule the jobs, while the modified due 

date is used to break the tie in the processing time of a job i at time t. The algorithm is 

as follows: 

 

Initialization 

 

JobSet A = [ J1, J2, J3, …….Jn], set of given jobs 

 

JobSet B = [0], set of scheduled job 

 

JobSet C = [ J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj  

 

STEP 1: Arrange the JobSet A in the order of increasing processing time 

 

STEP2: Break the tie in step 1 by using the modified due date rule. If tie still exist, break 

arbitrarily 

 

STEP 2: Compute the objective function of the schedule 

 

STEP 3: Stop. 

 

4.5.4 Proposed solution methods for the Class III problem 

Two heuristics (HeuV and HeuVI) are proposed for this problem. The heuristics are 

now described. 

 

 



67 
 

i. HeuV  

In order to minimise the composite function of total flowtime and total tardiness on a 

single processor with non-zero release dates, three parameters are involved; the 

processing time, the release date and the due date. The processing time and the release 

date affect the two objectives, while the due date affects only the tardiness. In this regard, 

the index defined as the sum of the due date, processing time and the release date (d+p+r) 

is used as the pivot to schedule the jobs, while all the other parameters are used to break 

the tie consecutively. The statement of the algorithm is as follows: 

 

STEP 1:  Initialization  

 

JobSet A = [ J1, J2, J3, …….Jn], set of given jobs 

 

 JobSet B = [0], set of scheduled jobs 

 

JobSet C = [ J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj, n=number of jobs  

 

STEP 2: Compute the index defined as the sum of the due date, processing time and the 

release dates (di+pi+ri) for each of the jobs in JobSet A 

 

STEP 3:  Arrange the jobs in JobSet A in the order of non- decreasing index computed 

in Step 2 and put the jobs in JobSet B 

  

STEP 4: If there is a tie in JobSet B, break the tie using the release date, processing time 

and the due date in that order. If tie still exists, break arbitrarily 

 

STEP 5:  Stop. 

 

ii. HeuVI  

This is a modification of the HeuV. It is based on the fact that the effect of the release 

dates and the processing time is more significant on the linear composite of objective 

function than the due date variable. This is because the processing time and the release 
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date affect the two objectives, while the due date has an effect on the tardiness only. The 

steps of the heuristic now follows; 

 

STEP 1:  Initialization  

 

JobSet A = [ J1, J2, J3, …….Jn], set of given jobs  

 

 JobSet B = [0], set of scheduled jobs 

 

JobSet C = [ J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj , n=number of jobs  

 

STEP 2: Compute the index defined as the sum of the processing time and the release 

date (pi+ri) for each of the jobs in JobSet A 

 

STEP 3:  Arrange the jobs in JobSet A in the order of increasing index computed in Step 

2 and put the jobs in JobSet C 

 

STEP 4: Arrange the jobs in JobSet A in the order of increasing release dates and put 

the jobs in JobSet D 

 

STEP 5: Compute the LCOF function; LCOF1 and LCOF2 for both JobSet C and JobSet 

D, respectively 

 

STEP 6: Set JobSet D as the required schedule (JobSet B), if LCOF2 is less than or equal 

to LCOF1. Otherwise, set JobSet C as the required schedule 

 

STEP 7: Stop. 

 

4.6   Model Implementation 

The proposed as well as the selected solution methods for each problem class were 

implemented to solve some single processor scheduling problems. These include the 

randomly generated problems and the real life problems collected from a firm. 
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4.6.1 Random problem generation 

 The Gursel et al. (2012) concept was explored to generate a single processor scheduling 

problems randomly. The relation was explained in section 3.1. The random problem 

generation codes (written in MATLAB) is the same for the two dynamic environment 

problems (Class I and III) but differ for the static problem (Class II). This is because the 

release date is a variable in the former but zero in the latter.  The random problem 

generation file was saved as the PROBG and the PROBR for the dynamic and static 

environment, respectively.  The Figure 4.3 and 4.4 shows the screen shot of the PROBG 

and the PROBR 
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Figure 4.3: Random generation code for the Class I and Class III (PROBG) 
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Figure 4.4: Screen shot of a Random problem generation code for the Class II 
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The generated problems were solved by the implemented solution methods. The 

coding of the solution on Matlab Programing was executed with the following files; 

i. The single instance file, which solves an instance of the problem, 

ii. The execution file, where the number of instances required for any size 

problem was loaded and solved to obtained the mean value of the objective 

function, and 

iii. The run problem file, where the single instant file and the execution file were 

loaded and run to give the output. 

Figure 4.5- 4.7 show the screen shot of a single instance file, the execution file, and the 

run problem file for the HeuIV proposed for the Class II problem, respectively.  
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Figure 4.5a:  Single instance file of the HeuIV Heuristic 
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Figure 4.5b : Single instance file of the  HeuIV 
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Figure 4.5c:   Single instance file of the HeuIV  
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Figure 4.6:   The execution file of the HeuIV 
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Figure 4.7:   The execution file of the HeuIV 
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4.7   The Real life Problem Size and the Current Firm Scheduling Policy 

The data of received jobs for a period of four months were collected from a firm as 

discussed in section 3.3. Jobs customer details form where the data were obtained were 

pooled together for each month. The problem sizes varied depending on the number of 

job accumulation under consideration. For 5, 10, and 15 jobs accumulation, the problem 

sizes were determined by using the first 5, 10, and 15 jobs for each month. The baking 

and spraying unit of the company schedule the jobs using the First Come, First Served 

(FCFS), if the jobs on the queue were not received on the same date. This implies that 

jobs are arranged in the order of increasing release date.  However, if the jobs on the 

queue were available on the same date, the firm explores the Shortest Processing Time 

(SPT) rule.  This implies that jobs are arranged in the order of non-decreasing processing 

times. 

 

Therefore, for the Class I and Class III problems, the implemented heuristics as well as 

the firm existing scheduling policy (FCFS) were coded and applied on the data. The 

same procedure was also carried out on the Class II with the Shortest Processing Time 

(SPT) rule being explored by the firm. However, a slight modification was made in the 

case of the Class II; the release dates of all the pooled jobs are set to zero.  

 

The information gathered from the firm reveal that a tolerance of 1 to 2 days is usually 

given to jobs that require a maximum of two to three days to complete. Also, for rentage 

above five days, a week (5-7 days) tolerance is usually added. This is used to compute 

the due date from the processing time.  
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Introduction 

The results obtained in solving the simulated and the real life problems by the 

implemented solution methods are discussed in this chapter. It involves evaluating the 

effectiveness and the efficiency of the solution methods through various comparative 

analyses of the objective function and the execution time, respectively. 

 

5.2 Results Based on the Total Tardiness with Release Dates (2TRD) 

The problem of minimizing the total tardiness of jobs with release dates on a single 

processor was considered as the Class I. The results are now presented and discussed. 

 

5.2.1 Results of the selected heuristics from the literature 

The simulated problems were solved by the heuristics selected among the solution 

methods found in the literature. Table 5.1 shows the mean of the total tardiness obtained. 

Based on the results in Table 5.1, it can be inferred that for the problem ranges; 0 ≤ n ≤ 

60, the DMDD heuristic produced a better solutions, while for ranges; 80 ≤ n ≤ 1000, 

the SPT rule performed better. Therefore, the DMDD and SPT heuristics were selected 

for comparison to the proposed heuristics and the optimal solution from the BB 

procedure. 
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Table 5.1: Mean of the total tardiness by solution methods and problem sizes 

 

S/N 

 

Problem sizes 

 

MST 

 

DMDD 

 

EDD 

 

ODD 

 

SPT 

1 5 x 1 48.64 2.82 2.82 48.64 38.42 

2 7x1 95.25 15.12 15.12 95.25 79.56 

3 8x1 137.45 17.4 18.1 137.45 112.62 

4 10 x 1 236.82 44.75 45.82 236.82 175.25 

5 15x1 498.16 169.32 171.72 498.16 409.18 

6 20 x 1 961.94 427.5 413.16 961.94 728 

7 25x1 1563 770.28 778.94 1563.2 1175.25 

8 30x1 2202 1230 1241.75 2202 1705.15 

9 40x1 3855.25 2450.2 2428 3855.25 2946 

10 60x1 8803.35 6206 6268.2 8803 6521 

11 80 x1 15848.2 11708.2 11833 15848 11534 

12 100 x1 24571.1 18742.5 18970 24571.8 17981.7 

13 150 x1 56134.1 44276.5 44776.1 56134 40324 

14 200 x1 99492.1 80851.3 81742.2 99492.6 71485.2 

15 300 x1 225690 186460 188840 225690 161070 

16 400 x1 399540 334130 338160 399540 283210 

17 500 x1 621480 519030 525160 621480 439550 

18 1000 x1 2502600 2128400 2155700 2502600 1768400 
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5.2.2 Results of the proposed heuristics  

The simulated problems solved by the selected solution methods from the literature were 

also implemented for the proposed heuristics and the BB method. Table 5.2 shows the 

total tardiness of the proposed heuristics, the BB algorithm and the two selected 

approaches from literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

Table 5.2: Mean of the total tardiness (2TRD) by solution methods and problem 

sizes  

    Proposed Heuristics Existing Heuristics Optimal 

No Sizes HeuI HeuII DMDD SPT BB 

1 5 x 1 4.32 0.96  2.82 38.42 0.26 

2 7x1 12.5 5.96 15.12 79.56 4.98 

3 8x1 14.54 12.00 17.4 112.62 10.25 

4 10 x 1 33.9 29.18 44.75 175.25 21.56 

  Mean 16.32 12.03 20.0225 101.463 9.26 

5 15x1 150.46 146.2 169.32 409.1 84.14 

6 20 x 1 407.74 394.25 407.5 728.2 285.5 

7 25x1 768.25 757 770.28 1175.35 491.68 

  Mean  442.15 432.48 449.03 770.91 287.11 

8 30x1 1115.48 1245.1 1230.14 1705.78  

9 40x1 2410.00 2550.04 2450.00 2946.92  

10 60x1 5816.89 6462.00 6206.28 6521.75  

11 80 x1 11040.52 12162.10 11708.50 11533.10  

12 100 x1 16960.65 19522.00 18742.40 17981.90  

13 150 x1 39134.35 45759.10 44276.20 40324.50  

14 200 x1 70572.20 83296.10 80851.20 71485.10  

15 300 x1 160210.00 192230.00 186460.00 161070.00  

16 400 x1 282150.54 344000.00 334130.00 283210.00  

17 500 x1 438690.26 533700 519031 439550  

18 1000x1 1766400.48 2182100 2128401 1768401  

  Mean 254045.56 311184 303044 254976  
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Table 5.2 shows that for the small-sized (5 ≤ n ≤ 10) and medium-sized (10 ≤ n ≤ 25) 

problems, the HeuII yielded a better result besides the optimal solution method (BB).  

Similarly, for the large-sized problems; 30 ≤ n ≤ 1000, the HeuI produced a better results 

compared to other solution methods. The results were subjected to analytical tests in 

order to measure the effectiveness of the solution methods for proper ranking. Also, a 

high standard deviation implies that the values of objective function of problem 

instances (in such problem size) shows a larger difference as the number of jobs 

increases. This also justified the combinatorial nature of scheduling problems. 

 

5.2.3 Approximation ratio test 

This test shows the closeness of the heuristics to the optimal or the standard solution 

method. It gives the overall measure of how many times the optimal or the standard 

solution performed better than other implemented solutions. The BB results (the 

optimal) were used for benchmarking the small-sized and medium-sized results while 

the HeuI results were used as a standard solution for the problem ranges; 30 ≤ n ≤ 1000. 

(See APPENDIX III, Table B, C and D for the approximation ratio Tables for the three 

problem sizes). 

 

Figure 5.1 shows the plots of approximation ratios for all the solution methods in the 

problem ranges; 5 ≤ n ≤ 10. The results shows that the heuristics are closer to the BB 

plot in the ranking order; HeuII, DMDD, HeuI, SPT.  The Figure also shows that as the 

problem size increases, the differences between the heuristics decreases.  Figure 5.2 

shows the plots of approximation ratios for the solution methods for the medium-sized 

problems; 10 ≤ n ≤ 25. The Figure shows that the HeuII outperformed the DMDD 

heuristic for the medium-sized problems. Therefore, the solution methods are closer to 

the BB plot in the ranking order; HeuII, HeuI, DMDD, SPT.  The Figure also shows that 

as the problem size increases, the differences between the heuristics decreases.   
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Figure 5.1: Plots of approximation ratio of all the solution methods for 5 ≤n ≤ 10 
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Figure 5.2: Plots of approximation ratio of all the solution methods for 10 ≤n ≤ 25 
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Furthermore, Table 5.3 and 5.4 show the overall means of approximation ratio of the 

solution methods for the small-sized and medium-sized problems, respectively. 
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Table 5.3: The overall means of approximation ratio for the small-sized problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuI 5.53 

HeuII 1.85 

DMDD 4.42 

SPT 45.71 

BB 1.00 
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Table 5.4: The Overall means of approximation ratio for medium-sized problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuI 1.59 

HeuII 1.55 

DMDD 1.66 

SPT 3.26 

BB 1.00 
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The overall means of approximation ratio computed implies that the HeuII, DMDD, 

HeuI, and SPT are 1.85, 4.29, 5.53, and 45.71 times the optimal, respectively, on the 

average for the small–sized problems. 

 

Figure 5.3 shows the plots of approximation ratio for all the solution methods for the 

large-sized problems; 30 ≤ n ≤ 1000. The Figure shows that for job ranges 30 ≤ n ≤ 60, 

the DMDD and HeuII are closer to the standard solution (HeuI). However, as the 

problem size increases to 80 jobs, the SPT method converges towards the standard 

solution, while other solution methods diverge. This implies that the SPT performed 

better than the DMDD and HeuII Heuristics. Furthermore, Table 5.5 shows the overall 

means of approximation ratio of all the solution methods for the large-sized problems. 
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Figure 5.3: Plots of approximation ratio of all the solution methods for large-sized 

problems 
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Table 5.5: The overall means of approximation ratio for large sized problem  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuI 1.00 

HeuII 1.16 

DMDD 1.12 

SPT 1.09 
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5.2.4 The t-test 

The results from the Table 5.2 and the approximation ratio test revealed that there are 

differences in the effectiveness of the solution methods. However, the analyses failed to 

ascertain whether the observed differences are significant or not. The statistical t-test of 

paired two samples for means was carried out, using Spreadsheet 2013 platform to 

determine the significance of the observed difference. Tables 5.6-5.8 show the results of 

the t-tests for the small-sized, medium-sized and the large-sized problems, respectively. 

 

The t-test shows that for the small-sized problems, only the HeuII produced the results 

that are not significantly different (α > 0.05) from the optimal, while other solution 

methods results are significantly different from the optimal (α < 0.05). For the medium-

sized problems, only the SPT solution method produced a result that is significantly 

different from the optimal. Table 5.8 shows that for the large-sized problems, the 

differences in the performance of all the implemented solution methods are not 

significantly different except for the SPT and HeuI. The HeuI performed significantly 

better than the SPT. This is because the poor performance of the SPT heuristic in the 

problem ranges 30 ≤ n ≤ 60 overcome its divergence when the number of jobs exceeded 

80.  
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Table 5.6:  t-test for mean of total tardiness for the small-sized problems. 

Solution methods HeuI HeuII DMDD SPT BB 

HeuI -------- >0.05 >0.05 < 0.05* < 0.05* 

HeuII >0.05 ------- >0.05 < 0.05* > 0.05 

DMDD >0.05 >0.05 ------- < 0.05* < 0.05* 

SPT <0.05* < 0.05* < 0.05* ---------- < 0.05* 

BB <0.05* > 0.05 < 0.05* <0.05* -------- 

Note: *indicates significant result; Sample size = 50; -----indicates not necessary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 
 

Table 5.7:  t-test for mean of total tardiness for the medium-sized problems. 

Solution methods HeuI HeuII DMDD SPT BB 

HeuI -------- >0.05 >0.05 <  0.05* >0.05 

HeuII >0.05 ------- >0.05 < 0.05* >0.05 

DMDD >0.05 >0.05 ------- < 0.05* >0.05 

 SPT <0.05* <0.05* <0.05* -------- <0.05* 

BB > 0.05 > 0.05 > 0.05 < 0.05* ------- 

Note: *indicates significant result; Sample size = 50; -----indicates not necessary 
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Table 5.8:  t-test for mean of total tardiness for the large- sized problems 

 

 

 

 

 

 

Note: *indicates significant result; Sample size = 50; -----indicates not necessary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods HeuI HeuII DMDD SPT 

HeuI ------- >0.05 >0.05 <0.05* 

HeuII >0.05 ------- >0.05 >0.05 

DMDD >0.05 >0.05 -------- >0.05 

SPT <0.05* >0.05 >0.05 ------ 
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5.2.5 The Optimal Count (O.C) test 

The test counts the number of times the heuristics yielded the same value of the total 

tardiness as the BB method. The test measures the chance of exploring optimal schedule 

in service, if a given heuristics is implemented. Table 5.9 shows the result of the count 

test. From the Table 5.9, it can be deduced that the number of times the heuristics yielded 

the optimal reduces as the problem sizes increases. Also, the HeuII produced the best 

results. The t-test result on the optimal count shows that, the HeuII is significantly better 

than other result. This is shown in Table 5.9b 
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Table 5.9a: The Optimal Count test 

S/No Problem Sizes HeuI HeuII DMDD SPT 

1 5 x 1 54 78 58 0 

2 7x1 44 60 42 0 

3 8x1 30 56 24 0 

4 10 x 1 22 48 10 0 

 Mean Optimal count  37.5 60.5 33.5 0 

5 15x1 6 14 2 0 

6 20 x 1 0 0 0 0 

7 25x1 0 0 0 0 
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Table 5.9b:  t-test for the optimal count for the small- sized problems 

Note: *indicates significant result; -----indicates not necessary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods HeuI HeuII DMDD SPT 

HeuI ------- <0.05* >0.05 <0.05* 

HeuII <0.05* ------- <0.05* <0.05* 

DMDD >0.05 <0.05* -------- <0.05* 

SPT <0.05* <0.05* <0.05* ------ 
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5.2.6 The consistency test 

The number of times the heuristic achieved optimality, the closeness of the heuristics to 

the optimal, as well as the significance of the observed differences to the optimal or the 

standard solution has been measured by the optimal count test, approximation ratio test 

and t-test, respectively. However, none of the tests measure the consistency of the 

solution methods in all the problem sizes in the fifty problem instances solved. To 

achieve this, the consistency test was carried out. The test involves counting the number 

of times each of the solution method yields the best result (the minimum mean value of 

total tardiness) in the fifty instances solved for each problem size. Table 5.10 shows the 

results of the consistency test. 
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Table 5.10:  The Consistency test for all the problem sizes 5≤n ≤ 1000. 

S/No HeuI HeuII DMDD SPT Rank 

5 x 1 2 100 4 0 HeuII, DMDD, HeuI, SPT 

7x1 4 100 6 0 HeuII, DMDD, HeuI, SPT 

8x1 12 96 0 0 HeuII, DMDD, HeuI, SPT 

10 x 1 10 96 2 0 HeuII, DMDD, HeuI, SPT 

15x1 26 82 0 0 HeuII, DMDD, HeuI, SPT 

20 x 1 38 66 12 0 HeuII, DMDD, HeuI, SPT 

25x1 50 54 4 0 HeuII ,DMDD, HeuI, SPT 

30x1 66 40 52 0 HeuI, DMDD, HeuII, SPT 

40x1 56 20 32 10 HeuI, HeuII,  DMDD, SPT 

60x1 70 24 14 24 HeuI, HeuII, SPT, DMDD 

80 x1 80 2 10 56 HeuI, SPT , DMDD, HeuII 

100 x1 82 0 0 72 HeuI, SPT , DMDD ,HeuII 

150 x1 86 0 0 82 HeuI, SPT , DMDD ,HeuII 

200 x1 86 0 0 80 HeuI, SPT , DMDD ,HeuII 

250 x1 90 0 0 84 HeuI, SPT , DMDD ,HeuII 

300 x1 90 0 0 84 HeuI, SPT , DMDD ,HeuII 

400 x1 92 0 0 86 HeuI, SPT , DMDD ,HeuII 

500 x1 94 0 0 90 HeuI, SPT , DMDD ,HeuII 

1000 x1 98 0 0 90 HeuI, SPT , DMDD ,HeuII 
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Therefore, based on effectiveness, it can be inferred that  

i. The HeuII is recommended for the small and medium-sized problems.  

ii. The HeuI is recommended for the large- sized problems. 

 

5.2.7 Real life results based on the total tardiness problem 

Some real life single processor scheduling problems data were collected from VAL-

VAL auto clinic to demonstrate the utility of the proposed models. All the implemented 

heuristics for simulated problems as well as the firm existing scheduling policy (FCFS) 

were applied on the data. The objective was to minimise the total tardiness. The results 

of the mean value of the total tardiness for the problem sizes are shown in Tables 5.11.  
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Table 5.11: The mean of the total tardiness by solution methods for real life 

problems 

Problem size Sample size HeuI HeuII DMDD SPT FCFS 

5x1 20 6.2 4.85 5.35 9.25 9.05 

10x1 6 44.8 38.5 42.8 61 49 

15x1 6 68.2 64.8 167.7 171.7 76.8 
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In order to recommend a scheduling policy for the firm, the percentage loss or gain of 

the existing FCFS policy with respect to each of the implemented solution methods was 

carried out. These are shown in Tables 5.12 – 5.14. 
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Table 5.12: Percentage gain or loss by adopting the HEUI policy 

Problem Sizes 
Sample 

size 
HeuI FCFS Difference 

% gain (total 

tardiness) 
Remark 

5x1 20 6.2 9.05 2.85 +46% Gain 

10x1 6 44.8 49 4.2 +9.40% Gain 

 15x1 6 68.2 76.8 8.6 +12.7 Gain 

Mean of percentage gain by adopting the HeuI policy                          22.7%        

Gain 
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Table 5.13: Average gain or loss by adopting the HEUII policy 

Problem size 
Sample 

size 
HEUII FCFS Difference 

%gain 

(total 

tardiness) 

Remark 

5x1 

  

4.85 9.05 

4.2 +86.6% Gain 20 

10x1 

  

38.5 49 

10.5 +27.3% Gain 6 

15x1 

  

64.8 76.8 

12 +19% Gain 6 

 Mean of percentage gain by adopting the HeuII policy 44.3%      

Gain 

Standard deviation of percentage gain by adopting the HeuII policy 36.9% 
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Table 5.14: Average gain or loss by adopting DMDD                                 

Problem 

size 

Sample 

size 
DMDD FCFS Difference 

 

% gain or 

loss(total 

tardiness) 

Remark 

5x1 20 5.35 9.05 3.7 +69% Gain 

10x1 6 42.8 49 6.2 +15% Gain 

15x1 6 167.7 76.8 -90.9 -118% Loss 
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Table 5.15: Average gain or loss by employing SPT 

Problem 

sizes 

 

Sample 

size FCFS SPT Difference 

%  loss (total 

tardiness) Remark 

5x1 

 

20 9.05 9.25 −0.25 -2.76% Loss 

10x1 

 

6 49 61 −12 -24.5% Loss 

15x1 

 

6 76.8 171.7 −94.6 -123% Loss 
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The gains and losses from the Table 5.12 show that there is percentage gain in total 

tardiness by implementing the HeuI for the three problem sizes. Table 5.13 shows that 

the HeuII scheduling policy is better than the FCFS policy currently in practice. Also, 

the benefits of adopting the HeuII scheduling policy was found to be greater than that of 

the HeuI policy.  Therefore, the HeuII scheduling policy is recommended over the HeuI 

policy. Table 5.14 shows that the DMDD scheduling policy is not the best method for 

the firm when the number of vehicles on the queue is fifteen jobs. Though, it was found 

that the policy is better than the FCFS employed by the firm when there are 5 and 10 

vehicles on the queue. Table 5.15 shows that by adopting the SPT policy over the 

currently practiced FCFS policy would lead to loss of effectiveness. Thus, the SPT 

policy is not suited to the firm environment for jobs not received on the same date.  

 

5.2.8 Results based on the execution time with respect to the total tardiness  

The performance of the implemented solution methods were also measured based on the 

time required to solve an instance of the problem. Table 5.15 shows the mean execution 

time obtained for all the solution methods by problem sizes. 
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Table 5.16: Mean of the execution time by solution methods and problem sizes. 

Proposed Heuristics Existing Heuristics Optimal 

S/No 
Problem 

Sizes 

 

HeuI 

 

HeuII 

 

DMDD 

 

SPT 

 

BB 

1 5 x 1 0.00061 0.00063 0.00067 0.0002 288 

2 7x1 0.00061 0.00064 0.00067 0.0002 962 

3 8x1 0.00062 0.00065 0.00067 0.0002 1560 

4 10 x 1 0.00064 0.00066 0.00069 0.0002 2979 

5 15x1 0.00069 0.0007 0.00078 0.0002 4535 

6 20 x 1 0.00071 0.00075 0.00086 0.00023 8727 

7 25x1 0.00072 0.00074 0.00092 0.00026 17128 

8 30x1 0.00075 0.00077 0.00099 0.00028   

10 40x1 0.00079 0.00079 0.00148 0.00029   

11 60x1 0.00083 0.00085 0.00196 0.00031   

12 80 x1 0.00087 0.00089 0.00277 0.00035   

13 100 x1 9.10E-05 9.3E-05 0.00362 3.70E-05   

14 150 x1 0.0095 0.0096 0.083 0.00398   

15 200 x1 0.00119 0.0012 0.0057 0.00041   

16 300 x1 0.0023 0.0011 0.0472 0.00048   

17 400 x1 0.00284 0.00065 0.0791 0.00057   

18 500 x1 0.00352 0.0075 0.0866 0.00067   

19 1000 x1 0.0049 0.0054 0.1321 0.00089   
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Expectedly, the BB method has the highest execution time. The time complexity 

associated with this method limits its application for large-sized problems. The Table 

also shows that the SPT algorithm yielded the best results (the minimum execution time). 

Furthermore, the t-test and approximation ratio test were carried out to measure the 

efficiency of the solution methods.  

 

5.2.9 The t-test 

The t-tests was carried out to ascertain whether the differences observed between the 

execution times of the SPT and other heuristics were significant. The statistical t-test of 

paired two-samples for means was carried out, using spreadsheet 2013 data analysis. 

Table 5.16-5.18 show the results of t-test for the three problem sizes (small, medium and 

large sized problems) 
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Table 5.17:  t-test for mean execution time for 5 ≤n ≤ 10 problems 

Solution methods HeuI HeuII DMDD SPT BB 

HeuI --------- >0.05 >0.05 <0.05* <0.05* 

HeuII >0.05 ------- >0.05 <0.05* <0.05* 

DMDD <0.05* <0.05* ------- <0.05* <0.05* 

SPT <0.05* <0.05* <0.05* ---------- <0.05* 

BB <0.05* <0.05* <0.05* <0.05* --------- 
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Table 5.18:  t-test for mean execution time for 10 ≤n ≤ 25 problems 

Solution methods HeuI HeuII DMDD SPT BB 

HeuI --------- >0.05 <0.05* <0.05* <0.05* 

HeuII >0.05 ------- <0.05* <0.05* <0.05* 

DMDD <0.05* <0.05* ------- <0.05* <0.05* 

SPT <0.05* <0.05* <0.05* ---------- <0.05* 

BB <0.05* <0.05* <0.05* <0.05* ----- 
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Table 5.19:  t-test for mean execution time for 30 ≤n ≤ 1000 problems 

Solution methods HeuI HeuII DMDD SPT 

HeuI --------- >0.05 <0.05* >0.05 

HeuII >0.05 ------- <0.05* >0.05 

DMDD <0.05* <0.05* ------- <0.05* 

SPT >0.05 >0.05 <0.05* ---------- 

Note* indicates significant result; Sample size = 50 ; -----indicates not necessary 
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The results of the t-tests show that the execution time of SPT hare significantly better 

(α0.05 > 0.05) than other solution methods for the small-sized and the medium-sized 

problems. However, for large-sized problems, the execution time of SPT is not 

significantly different from that of the HeuI and HeuII. Also, the two proposed heuristics 

are significantly faster than the DMDD (α0.05< 0.05) for the medium-sized and large-

sized problems. 

 

5.2.10 The approximation ratio test for the execution time 

The approximation ratio test was also used to compare the execution time of the 

heuristics. In this case, the SPT algorithm was used as the standard solution method (See 

APPENDIX 1, Table E for the approximation ratio Table). Figure 5.4-5.6 show the plots 

of approximation ratio for all the solution methods for the three problem classes.  
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Figure 5.4: Plots of approximation ratio of solution methods for 5 ≤n ≤ 10 
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Figure 5.5: Plots of approximation ratio of solution methods for 15 ≤n ≤ 25 
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Figure 5.6: Plots of approximation ratio of solution methods for 30 ≤n ≤ 1000 
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The results show that as the problem size increases, the DMDD solution method diverges 

away from the standard solution. Thus, for the three problem sizes, the heuristics can be 

ranked in the order: SPT, HeuI, HeuII, DMDD. Furthermore, the overall means of 

approximation ratios (of the execution time) for all the solution methods for the three 

problem sizes are shown in Tables 5.20-5.22. 
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Table 5.20: The overall means of the approximation ratio for small sized problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

BB 7262500 

HeuI 3.1 

HeuII 3.23 

DMDD 3.38 

SPT 1.0 
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Table 5.21: The overall means of the approximation ratio for medium sized 

problems 

Solution methods Overall means of approximation ratio 

BB 42333333 

HeuI 3.1 

HeuII 3.16 

DMDD 3.73 

SPT 1.0 
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Table 5.22: The overall means of the approximation ratio for large-sized problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuI 3.53 

HeuII 3.57 

DMDD 60.93 

SPT 1.00 
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The results based on the mean execution time show that the SPT heuristic is the most 

efficient solution method compare to other solution. However, with the exception of BB, 

no other solution requires prohibitive execution time. 

 

Heuristics are being explored to obtain effective solution within an acceptable 

computation time. Though, SPT heuristic is the most efficient solution method, the 

heuristic is the least effective solution compared to other methods. Also, the two 

proposed heuristics; HeuII and HeuI, which are the most effective solution methods, 

have execution-time approximation ratio of HeuII(3.23, 3.1, 3.57), HeuI(3.1, 3.2, 3.53) 

with respect to the SPT for the small, medium and large sized problems respectively.  

However, the effectiveness approximation ratio of SPT are 45.71, 3.27 compared to 

HeuII (1.85, 1.55), HeuI(5.53,1.59) with respect to the optimal for the small and medium 

sized problems, respectively. Also, the HeuII yielded optimal in 60.5% for small-sized 

problems compare to 0% in SPT. In this regards, the performance of the two proposed 

heuristics with respect to the effectiveness and efficiency justified the selection of the 

HeuII and HeuI for the small and medium-sized and large sized problems, respectively.  

 

Furthermore, the two proposed heuristics performed better than the DMDD. In terms of 

effectiveness and efficiency, the analytical tests reveal that the HeuII performed better 

than the DMDD for the small and medium-sized problems. For large-sized problems, 

the HeuI performed better than the HeuII and the DMDD. Thus, the HeuII is 

recommended over the DMDD for the small and medium sized problems, while the HeuI 

is recommended for the large-sized problems. 

 

5.3 Results Based on the Bi-criteria Scheduling Problem 

The bi-criteria scheduling problem of minimizing the composite function of total 

tardiness and total flowtime of jobs with zero release dates on single processor was 

explored as the Class II of this work.  The dynamic variant of the problem was named 

the Class III.  The results of the simulated problems and the real life problems for the bi-

criteria approaches are presented in this section. For the simulated problems, the results 

include the mean of the normalized composite function of total tardiness and total 

flowtime of all the implemented solution methods for the two classes. The execution 

time are also presented. For the real life problems, the mean of the normalized composite 

objective for all the implemented solution methods were compared to that of the firm 
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scheduling policy. The expected gain or loss for the firm, if a new scheduling policy 

were to be adopted, was computed and expressed as a percentage. This should aid the 

decision of the firm in adopting the most effective scheduling policy. 

 

5.4 Results Based on the Static Variant of the Bi-criteria Problem (3TFZRD) 

The mean values of the normalized total LCOF by solution methods and problem sizes 

are shown in Table 5.23. 
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Table 5.23: Mean value of the normalized total LCOF by solution methods  

  Existing 

Heuristics 

Implemented 

Heuristics 

Proposed 

Heuristics 
Optimal 

   

S/N  Sizes HeuA HeuB GAlg HeuIII HeuIV BB 

1 5x1 0.2900 0.5689 0.2975 0.2823 0.313 0.2823 

2 7x1 0.3122 0.5598 0.3144 0.3015 0.3107 0.3015 

3 8x1 0.3289 0.563 0.3168 0.3115 0.3225 0.3115 

4 10x1 0.3451 0.5568 0.3293 0.3281 0.3304 0.3281 

  Mean 0.3191 0.5621 0.3145 0.3059 0.3192 0.3059 

5 15x1 0.357 0.5684 0.3353 0.3345 0.3355 0.3345 

6 20x1 0.3669 0.571 0.344 0.3437 0.3441 0.3436 

7 25x1 0.3648 0.5765 0.3413 0.3411 0.3413 0.3410 

  Mean 0.3629 0.5719 0.3402 0.33977 0.3403 0.3397 

8 30x1 0.3675 0.5777 0.3439 0.3438 0.3439   

9 40x1 0.3718 0.5776 0.348 0.3478 0.3479   

10 60x1 0.3708 0.5873 0.3476 0.3476 0.3477   

11 80 x1 0.3715 0.5891 0.3478 0.3478 0.3479   

12 100 x1 0.374 0.5848 0.3489 0.3489 0.3489   

13 150 x1 0.3746 0.5892 0.3509 0.3507 0.3508   

14 200 x1 0.3738 0.5891 0.3491 0.3491 0.3491   

15 300 x1 0.3751 0.59 0.3511 0.3511 0.3511   

16 400 x1 0.3773 0.588 0.3528 0.3501 0.3503   

17 500 x1 0.3761 0.5897 0.3519 0.3519 0.3519   

18 1000 x1 0.3766 0.5987 0.3523 0.3523 0.3523   

  Mean  0.3736 0.5874 0.34948 0.34919 0.3492   
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The results obtained show that the solution methods can be ranked in the order:  HeuIII, 

GAlg, HeuIV, HeuA, HeuB. The trends of the results for the small-sized, medium-sized 

and large -sized problems were subjected to analytical tests to measure the effectiveness 

of the heuristics.  

 

5.4.1 The t-test 

To ascertain whether the differences observed are significant, t-tests for paired two-

samples for means were carried out, using the spreadsheet 2013 data analysis. Tables 

5.24- 5.26 show the results of the t- tests for the small, medium and the large problem 

sizes, respectively. Furthermore, Table 5.27 and 5.28 show the overall means of 

approximation ratio of all the solution methods for the small-sized and the medium-sized 

problems, respectively. 
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Table 5.24: t-test for the mean value of the total LCOF for small-sized problems 

(5≤n≤10) 

Solution 

method 

GAlg HeuIII HeuIV HeuA HeuB BB 

GAlg ---- <0.05* >0.05 <0.05* <0.05* <0.05* 

HeuIII <0.05* ------ >0.05 <0.05* <0.05* >0.05 

HeuIV >0.05 >0.05 ----- <0.05* <0.05* >0.05 

HeuA <0.05* <0.05* >0.05 -------- >0.05 <0.05* 

HeuB <0.05* <0.05* <0.05* >0.05 -------- <0.05* 

BB <0.05* >0.05 >0.05 <0.05* <0.05* --------- 
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Table 5.25:  t-test for mean for total LCOF for medium-sized problems  

(10 ≤n ≤ 25) 

Solution 

method 

GAlg HeuIII HeuIV HeuA HeuB BB 

GAlg ---- >0.05 >0.05 <0.05* <0.05* >0.05 

HeuIII <0.05* ------ >0.05 <0.05* <0.05* >0.05 

HeuIV >0.05 >0.05 ----- <0.05* <0.05* >0.05 

HeuA <0.05* <0.05* >0.05 -------- >0.05 <0.05* 

HeuB <0.05* <0.05* <0.05* >0.05 -------- <0.05* 

BB <0.05* >0.05 >0.05 <0.05* <0.05* --------- 
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Table 5.26:  t-test for total LCOF for large-sized problems (30 ≤n ≤ 1000)  

Solution method GAlg HeuIII HeuIV HeuA HeuB 

GAlg ---- >0.05 >0.05 <0.05* <0.05* 

HeuIII >0.05 ------ >0.05 <0.05* <0.05* 

HeuIV >0.05 >0.05 ----- <0.05* <0.05* 

HeuA <0.05* <0.05* <0.05* -------- >0.05 

HeuB <0.05* <0.05* <0.05* >0.05 -------- 

Note* indicates significant result; Sample size = 50;  -----indicates not necessary. 
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The t-tests results show that for the small and medium-sized problems, only the two 

proposed heuristics yielded results that are not significantly different from the optimal, 

while the heuristics found in the literature (the GAlg, HeuA and HeuB) produced results 

that are significantly different from the optimal. Also, the HeuIII, HeuIV, and GAlg are 

all significantly better than the HeuA and HeuB.  In addition, the two existing heuristics 

(HeuA and HeuB) produced results that are significantly different (p < 0.05) from each 

other. The HeuA is significantly better than the HeuB. For the large-sized problems, the 

two proposed heuristics as well as the implemented GAlg are not significantly different 

from each other but are significantly better than the HeuA and HeuB. 

 

5.4.2  The approximation ratio test 

The BB solution results (the optimal) were used to compute the approximation ratio for 

other heuristics in the problem range 5 ≤ n ≤ 25 (small and medium-sized problems). 

The HeuIII heuristic results were used to compute the approximation ratio for other 

solution methods for large-sized problem (See APPENDIX III, Tables F, G, and H for 

the approximation ratio Tables for the three problem sizes). Figure 5.7 and 5.8 show the 

plots of approximation ratios for the solution methods for the small-sized and medium-

sized problems respectively. From the result, it can be observed that the HeuB plot is far 

away from the optimal (BB) plot compared to other solution methods.  
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Figure 5.7: Plots of approximation ratio of solution methods for 5 ≤ n ≤ 10 
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     Figure 5.8: Plots of approximation ratio of solution methods for 15 ≤ n ≤ 25 
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Table 5.27: The overall means of approximation ratio for ranges; 5≤n ≤ 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuIII 1.00 

HeuIV 1.04 

GAlg 1.04 

HeuA 1.05 

HeuB 1.84 

BB 1.00 
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Table 5.28: The overall means of approximation ratio for ranges; 15≤n ≤ 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuIII 1.0002 

HeuIV 1.002 

GAlg 1.01 

HeuA 1.08 

HeuB 1.68 

BB 1.00 
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Similarly, Figure 5.9 shows the plots of approximation ratio for all the solution methods 

in the problem range; 30 ≤ n ≤ 1000. The plots show that the HeuA and the HeuB show 

a wider difference compare to other heuristics.   
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  Figure 5.9: Plots of approximation ratio by problem sizes 30 ≤ n ≤ 1000 
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Furthermore, Table 5.29 shows the overall means of approximation ratio of all the 

solution methods for the large-sized problems. 
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Table 5.29:  The overall means of approximation ratio for the ranges;  

30≤n ≤ 1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuIV 1.0003 

GAlg 1.0009 

HeuA 1.0700 

HeuB 1.6800 

HeuIII 1.0000 
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5.4.3 The Optimal Count (OC) test 

The test count the number of time the heuristics yield the same value of the objective 

function as the BB method. Table 5.30 shows the result of count test. 
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Table 5.30: The Optimal Count test 

S/No Problem sizes 
 

HeuIII 

        

HeuIV 

       

HEUA 

   

HEUB 

       

GAlg 

1 5 x 1 96 78 26 0 84 

2 7x1 96 76 16 0 84 

3 8x1 94 76 12 0 84 

4 10 x 1 90 72 10 0 80 

  Mean  94 75.5 16 0 83 

5 15x1 86 64 4 0 74 

6 20 x 1 82 70 0 0 68 

7 25x1 78 54 0 0 60 
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Based on the optimal count test results, the heuristics can be arranged in the order; 

HeuIII, GAlg, HeuIV, HeuA, HeuB. Furthermore, the result of t-test on the optimal 

count shows that the HeuIII result is significantly different from the other heuristics 

results. This is shown in Table 5.30b. 
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Table 5.30b : t-test for the Optimal count for the small-sized problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution method GAlg HeuIII HeuIV HeuA HeuB 

GAlg ---- <0.05* <0.05* <0.05* <0.05* 

HeuIII <0.05* ------ <0.05* <0.05* <0.05* 

HeuIV <0.05* <0.05* ----- <0.05* <0.05* 

HeuA <0.05* <0.05* <0.05* -------- >0.05 

HeuB <0.05* <0.05* <0.05* <0.05* -------- 
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5.4.4 The consistency test 

The consistency test was carried out to measure the tendency of a solution method to 

obtain best result in the fifty instances for all the problem sizes. The number of times 

each of the solution methods yielded the best results were expressed in percentage. 

This is shown in Table 5.31. 
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Table 5.31: The consistency test 

Sizes GAlg HeuIII HeuIV HeuA HeuB Rank 

5x 1 64 98 48 30 0 
HeuIII, GAlg, HeuA, 

GAlg, HEUIV, HEUB. 

7x1 66 98 42 24 0 
HEUIII, GAlg, HeuA, 

GAlg, HEUIV, HEUB. 

8x1 74 98 40 22 0 
HEUIII, GAlg, HEUA, 

GAlg, HEUIV, HEUB. 

10x1 82 94 38 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB, 

15x1 56 78 38 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

20x 1 82 86 40 0 2 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

25x1 98 90 44 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

30x1 72 94 34 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

40x1 74 100 34 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

60x1 94 100 42 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

80 x1 94 96 36 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

100 x1 96 100 34 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

150 x1 92 98 34 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 
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Table 5.31 Cont’d 

Sizes GAlg HeuIII HeuIV HeuA HeuB Rank 

200 x1 100 100 58 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

250 x1 94 100 86 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

300 x1 96 100 92 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

400 x1 100 100 98 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

500 x1 98 100 96 0 0 
HEUIII, GAlg, HEUIV, 

HEUA, HEUB 

1000 

x1 
100 100 98 0 0 

HEUIII, GAlg, HEUIV, 

HEUA, HEUB 
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5.4.5 Real life results based on static variant of the bicriteria problem 

The real life single processor scheduling problems data collected from VAL-VAL auto 

clinic were also implemented to demonstrate the utility of the heuristics proposed for the 

Class II problem. All the implemented heuristics as well as the firm existing scheduling 

policy (SPT) for jobs available on the same date were applied on the data. The objective 

was to minimise the composite function of the total tardiness and total flowtime. The 

results of the total normalized composite function obtained by all the solution methods 

are shown in Table 5.32.  
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Table 5.32: The mean of normalized total LCOF for the real life problem 

Problem 

Size 

 

Sample 

size HeuA HeuB 

 

 

HeuIII HeuIV GAlg 

 

 

SPT 

5x1 

 

20 0.2556 0.6049 

 

0.1376 0.1498 0.1378 

 

0.5701 

10x1 

 

5 0.2796 0.5392 

 

0.2774 0.2779 0.2776 

 

0.5930 

15x1 

 

5 0.4169 0.6124 

 

0.2975 0.3467 0.3012 

 

0.6572 
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In order to advise the firm on the best scheduling policy that suit its environments, the 

gain or loss from the use of any other scheduling policies compared to the SPT were 

computed. These are shown in Tables 5.33 – 5.37.  
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Table 5.33: Average gain or loss by adopting the HEUA policy 

Problem 

sizes 

Sample 

size HEUA SPT Difference Remark 

5x1 20 0.2556 

 

0.5701 +0.3145 Gain 

10x1 5 0.2796 

 

0.5930 +0.3134 Gain 

15x1 5 0.4169 

 

0.6572 +0.2403 Gain 
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Table 5.34: Average gain or loss by adopting the HeuB policy 

Problem sizes Sample size HeuB SPT Difference Remark 

5x1 20 0.6049 

 

0.5701 -0.0348 Loss 

10x1 5 0.5392 

 

0.5930 +0.0538 Gain 

15x1 5 0.6124 

 

0.6572 +0.0448 Gain 
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Table 5.35: Average gain or loss by adopting the GAlg policy 

Problem sizes Sample size GAlg SPT Difference Remark 

5x1 20 0.1378 

 

0.5701 +0.4323 Gain 

10x1 6 0.2776 

 

0.5930 +0.3154 Gain 

15x1 6 0.3012 

 

0.6572 +0.356 Gain 
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Table 5.36: Average gain or loss by adopting the HeuIII policy 

Problem sizes Sample size HeuIII SPT Difference Remark 

5x1 20 

 

0.1376 

 

0.5701 +0.4325 Gain 

10x1 6 

 

0.2774 

 

0.5930 +0.3156 Gain 

15x1 6 

 

0.2975 

 

0.6572 +0.3597 Gain 
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Table 5.37: Average gain or loss by adopting the HeuIV policy 

Problem sizes Sample size HeuIV SPT Difference Remark 

5x1 20 0.1498 

 

0.5701 +0.4203 Gain 

10x1 6 0.2779 

 

0.5930 +0.3151 Gain 

15x1 6 0.3467 

 

0.6572 +0.3105 Gain 
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However, since the objectives were normalized, the normalized average gains or losses 

is converted to percentage in order to make the best decision with regard to the preferred 

scheduling policy. The percentage gain or loss by adopting any new policy are shown in 

Tables 5.38-5.42. 
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Table 5.38: Percentage gain or loss by adopting the HEUA policy 

Problem 

sizes 

Sample 

size HEUA SPT Difference 

%gain (total 

tardiness) Remark 

5x1 20 0.2556 

 

0.5701 0.3145 

 

+123% Gain 

10x1 5 0.2796 

 

0.5930 0.3134 

 

+112% Gain 

15x1 5 0.4169 

 

0.6572 0.2403 

 

+57.7% Gain 

Percentage gain by adopting the HEUA policy                            97.6% 
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Table 5.39: Percentage gain or loss by adopting the HEUB policy 

Problem sizes 

Sample 

size HEUB SPT Difference 

 

%gain (total 

tardiness) Remark 

5x1 20 0.6049 

 

0.5701 -0.0348 

 

-5.7% Loss 

10x1 5 0.5392 

 

0.5930 0.0538 

 

+9.98% Gain 

15x1 5 0.6124 

 

0.6572 0.0448 

 

+7.35% Gain 

Percentage gain by adopting the HEUB policy 3.88% 
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Table 5.40: Percentage gain or loss by adopting the GAlg policy 

Problem 

sizes 

Sample 

size GAlg SPT Difference 

%gain (total 

tardiness) Remark 

5x1 20 0.1378 

 

0.5701 0.4323 

 

+313% Gain 

10x1 6 0.2776 

 

0.5930 0.3154 

 

+113% Gain 

15x1 6 0.3012 

 

0.6572 0.356 

 

+118% Gain 
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Table 5.41: Percentage gain or loss by adopting the HeuIII policy 

Problem 

sizes 

Sample 

size HeuIII SPT Difference 

 

%gain (total 

tardiness) Remark 

5x1 20 

 

0.1376 

 

0.5701 0.4325 

 

+314% Gain 

10x1 6 

 

0.2774 

 

0.5930 0.3156 

 

+113% Gain 

15x1 6 

 

0.2975 

 

0.6572 0.3597 

 

+121% Gain 

Mean of Percentage gain or loss by adopting the HEUIII policy             182.7% 

Mean of Percentage gain or loss by adopting the HEUIII policy             ±113.8% 
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Table 5.42: Percentage gain or loss by adopting the HeuIV policy 

Problem 

sizes 

Sample 

size HeuIV SPT Difference 

 

%gain 

(time) Remark 

5x1 20 0.1498 

 

0.5701 0.4203 

 

+281% Gain 

10x1 6 0.2779 

 

0.5930 0.3151 

 

+112% Gain 

15x1 6 0.3467 

 

0.6572 0.3105 

 

+89.6% Gain 

Percentage gain or loss by adopting the HeuIV policy                        160.9 
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Results obtained from Table 5.38 implied that by adopting the HEUA method over the 

existing SPT policy, the firm would experience positive changes (gain) in performance, 

which is expressed as the percentage change in time. 

 

Results obtained from Table 5.39 implied that by adopting the HeuB policy over the 

existing SPT method, the firm would experience a loss in performance if the 

accumulated jobs is five but would experiences positive changes for ten and fifteen 

accumulated jobs. This is expressed as the percentage change in total tardiness. Results 

obtained from Table 5.40 implied that by adopting the GAlg heuristic over the existing 

SPT policy, the firm would experience positive changes (gain) in performance which is 

expressed as the percentage change in time. The percentage gain from the three problem 

sizes considered is greater than that of HeuA and HeuB. Thus; GAlg heuristics is 

recommended over HeuA and HeuB. 

 

Results obtained from Table 5.41 implied that by adopting the HeuIII over the existing 

SPT policy, the firm would experience positive changes (gain) in performance which is 

expressed as the percentage change in time. The percentage gain from the three problem 

sizes considered is greater than that of GAlg, HeuA and HeuB. Thus; the HeuIII is 

recommended over the GAlg, HeuA and HeuB. Results obtained from Table 5.42 

implied that by adopting the HeuIV over the existing SPT policy, the firm would 

experience positive changes (gain) in performance which is expressed as the percentage 

change in time. The percentage gain from the three problem sizes considered is lesser 

than that of the HeuIII and GAlg but greater than that of HeuA and HeuB. Therefore, 

HeuIII scheduling policy is recommended for the firm for jobs received on the same 

date. 

 

5.4.6 Results based on the efficiency for the static variant of the problem 

The efficiency of an algorithm is measured through the execution time required to solve 

an instance of a given problem. In order to show the overall performance of the solution 

methods, the efficiency was also considered. In this regard, the mean of execution time 

to complete each problem size was computed. Table 5.43 shows the mean of the total 

execution time by solution methods and problem sizes. 

 



160 
 

Table 5.43: Mean of the total execution time by solution methods and problem sizes 

 

 

Existing 

Heuristics 

Proposed 

Heuristics 

Implemented 

 

Optimal 

 

S/N Sizes  HeuA HeuB HeuIII HeuIV GAlg BB 

1 5 x 1 0.00065 0.00081 0.0016 0.0027 0.0036 2486.25 

2 7x1 0.0007 0.00083 0.0018 0.003 0.0037 3012.12 

3 8x1 0.00072 0.00083 0.0018 0.0032 0.0037 3215.45 

4 10 x 1 0.00076 0.00085 0.0019 0.0035 0.0039 3472.12 

5 15x1 0.00087 0.0009 0.0021 0.0045 0.0041 5243.23 

6 20 x 1 0.00092 0.00094 0.0023 0.0058 0.0045 7453.54 

7 25x1 0.00098 0.00097 0.0027 0.0064 0.0056 9145.62 

8 30x1 0.001 0.0011 0.003 0.0076 0.0068   

9 40x1 0.0015 0.0016 0.0033 0.0081 0.009   

10 60x1 0.0015 0.0018 0.009 0.0088 0.0073   

11 80 x1 0.002 0.0021 0.019 0.0114 0.0088   

12 100 x1 0.0027 0.0029 0.023 0.0155 0.0108   

13 150 x1 0.003 0.0037 0.017 0.023 0.0155   

14 200 x1 0.0039 0.0041 0.016 0.0284 0.0197   

15 300 x1 0.0048 0.0055 0.0226 0.0382 0.0283   

16 400 x1 0.008 0.008 0.0301 0.0517 0.0374   

17 500 x1 0.01 0.01 0.0395 0.0644 0.047   

18 1000 

x1 

0.0219 0.022 0.0955 0.1274 0.1136   
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The results based on the execution time show that the HeuA has the lowest execution 

time while the BB has the highest execution time. However, to ascertain whether the 

differences observed between the execution time of all the heuristics are significant, 

statistical t-test of paired two-samples for means was carried out, using spreadsheet 2013 

data analysis. Tables 5.44-5.46 show the results of the t-tests. 
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Table 5.44:  t-test for the execution time for small-sized problems 

Solution 

method 

GAlg HeuIII HeuIV HeuA HeuB BB 

GAlg ---- >0.05 >0.05 <0.05* <0.05* <0.05* 

HeuIII >0.05 ------ >0.05 <0.05* <0.05* <0.05* 

HeuIV >0.05 >0.05 ----- <0.05* <0.05* <0.05* 

HeuA <0.05* <0.05* <0.05* ------- <0.05* <0.05* 

HeuB <0.05* <0.05* <0.05* <0.05* <0.05* <0.05* 

BB <0.05* <0.05* <0.05* <0.05* <0.05* -------- 
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Table 5.45:  t-test for the execution time for medium-sized problems 

Solution 

method 

GAlg HeuIII HeuIV HeuA HeuB BB 

GAlg ---- >0.05 >0.05 <0.05* <0.05* <0.05* 

HeuIII >0.05 ------ >0.05 <0.05* <0.05* <0.05* 

HeuIV >0.05 >0.05 ----- <0.05* <0.05* <0.05* 

HeuA <0.05* <0.05* <0.05* ------ <0.05* <0.05* 

HeuB <0.05* <0.05* <0.05* <0.05* ------ <0.05* 

BB <0.05* <0.05* <0.05* <0.05* <0.05* ------- 
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Table 5.46:  t-test for the execution time for large-sized problems 

Solution 

method 

GAlg HeuIII HeuIV HeuA HeuB 

GAlg ---- >0.05 >0.05 >0.05 >0.05 

HeuIII >0.05 ------ >0.05 >0.05 >0.05 

HeuIV >0.05 >0.05 ----- >0.05 >0.05 

HeuA >0.05 >0.05 >0.05 >0.05 >0.05 

HeuB >0.05 >0.05 >0.05 >0.05 >0.05 

Note* indicates significant result , Sample size = 50 ; -----indicates not necessary. 
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The results of the t-tests show that the execution time of the HeuA methods are 

significantly better than other solution method.  

 

Moreover, approximation ratio test was also carried out. HEUA was used as the standard 

because it has the lowest execution time. Figures 5.10-5.12 show the plots of 

approximation ratios for all the implemented solution methods. (See APPENDIX 1, 

Table I for the approximation ratio Table).  
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Figure 5.10: The plots of approximation ratio for the small-sized problems  
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Figure 5.11: The plots of approximation ratio for the medium-sized problems  
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Figure 5.12: The plots of approximation ratio for the large-sized problems  
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Tables 5.47-5.52 show the overall means of approximation ratio of all the solution 

methods for the three problem sizes.  
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Table 5.47:  The overall means of approximation ratio for the problems 5≤n ≤ 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

BB 4290627.574 

HeuIV 4.37 

HeuIII 2.51 

GAlg 5.06 

HeuB 1.18 

HeuA 1.00 
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Table 5.48:  The overall means of approximation ratio for the problem  

(15≤n ≤ 25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuIV 5.92 

HeuIII 4. 18 

GAlg 5.06 

HeuB 1.08 

HeuA 1.00 
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Table 5.49:  The overall means of approximation ratio for the problem ranges, 

 30≤n ≤ 1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution methods Overall means of approximation ratio 

HeuIV 6.31 

HeuIII 3. 83 

GAlg 5.00 

HeuB 1.02 

HeuA 1.00 
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The results based on the mean execution time show that the HeuA is the most efficient 

solution method compare to other solution. However, with the exception of BB, no other 

solution requires prohibitive execution time. Furthermore, the small values of 

approximation ratios for other heuristics for the three problem classes implies that the 

effectiveness with respect to the optimal should be given a higher priority in determine 

the recommended heuristic for the problem. However, the benefits of exploring the 

HeuIII heuristic is greater than that of HEUA. This is because in terms of effectiveness, 

the HeuIII heuristic is not significantly different from the optimal, yielded an 

approximation ratio of 1 and capable of yielding optimal results in 94% (in 50 problem 

instances) for small-sized problems while HEUA is significantly different from optimal, 

with A.R of 1.08 and optimal count of 16%. In this regards, for small, medium and large 

size problems, the proposed HeuIII is recommended. 

 

5.5 Results Based on the Dynamic Variant of the Bi-criteria Problem  

The scheduling problem of minimizing the composite function of total tardiness and 

total flowtime of jobs with non-zero release dates was explored as the Class III. This 

section presents the results obtained for the problem class. 

 

5.5.1 Simulation results based on effectiveness 

The mean values of the normalized total LCOF for the implemented solution methods 

for the problem class are shown in Table 5.50. 
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      Table 5.50: Mean of normalized total LCOF by solution methods 

  Implemented Heuristics Proposed Heuristics Optimal 

Problem sizes GAlg DMDD       HeuV HeuVI BB 

5 x 1 0.3437 0.2827      0.2360 0.2225 0.1601 

7x1 0.3728 0.2453      0.2249 0.2002 0.1675 

8x1 0.4011 0.2591    0.2466 0.209 0.1681 

10 x 1 0.4325 0.2733 0.2326 0.2067 0.1698 

Mean  0.387525 0.2651 0.23503 0.2096 0.1664 

15x1 0.5734 0.3366 0.2831 0.2708 0.1786 

20 x 1 0.6234 0.3788 0.3511 0.335 0.2624 

25x1 0.6605 0.406 0.3843 0.3768 0.2821 

Mean  0.6191 0.3738 0.3395 0.32753 0.24103 

30x1 0.6762 0.4307 0.4164 0.4073   

40x1 0.7121 0.4596 0.453 0.4491   

60x1 0.512 0.7406 0.5094 0.5018   

80 x1 0.7583 0.5365 0.536 0.5292   

100 x1 0.7828 0.5532 0.5494 0.5465   

150 x1 0.8011 0.5785 0.5775 0.5725   

200 x1 0.8024 0.5886 0.588 0.5855   

300 x1 0.8151 0.6019 0.5998 0.5978   

400 x1 0.825 0.6054 0.6061 0.6052   

500 x1 0.8255 0.6088 0.6094 0.6086   

1000 x1 0.837 0.6167 0.6168 0.6167   

Mean  0.7589 0.57459 0.55107 0.54729   
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Based on the results obtained, it can be deduced that the two proposed heuristics and the 

solution methods from the literature can be ranked in the order; HeuVI, HeuV, DMDD, 

GAlg. However, to ascertain whether the differences observed were significant, 

statistical t-test for paired two-samples for means were carried out, using the spreadsheet 

2013 data analysis. Tables 5.51 -5.53 show the results of test of mean for three problem 

ranges. 
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Table 5.51:  t-test for the mean value of the total LCOF for small-sized problems 

Solution methods GAlg HeuVI HeuV DMDD BB 

GAlg ---- <0.05* <0.05* <0.05* <0.05* 

HeuV <0.05* <0.05* ------- <0.05* <0.05* 

HeuVI <0.05* ------ <0.05* <0.05* <0.05* 

DMDD <0.05* <0.05* <0.05* -------- <0.05* 

BB <0.05* <0.05* <0.05* <0.05* --- 
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Table 5.52:  t-test for the mean value of the total LCOF for medium-sized 

problems 

Solution methods GAlg HeuV HeuVI DMDD BB 

GAlg ---- <0.05* <0.05* <0.05* <0.05* 

HeuV <0.05* ------- <0.05* <0.05* <0.05* 

HeuVI <0.05* <0.05* ------ <0.05* <0.05* 

DMDD <0.05* <0.05* <0.05* -------- <0.05* 

BB <0.05* <0.05* <0.05* <0.05* --- 
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Table 5.53:  t-test for the mean value of the total LCOF for large-sized problems 

Solution 

methods 
GAlg HeuV 

DMDD 
HeuVI 

GAlg ---- <0.05* <0.05* <0.05* 

HeuV <0.05* ------- >0.05 <0.05* 

HeuVI <0.05* <0.05* >0.05 ------ 

DMDD <0.05* >0.05 --------- >0.05 

Note:* indicates significant result; Sample size = 50; -----indicates not necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 
 

Tables 5.51 and 5.52 show that for the small-sized and medium-sized problems, all the 

heuristics yielded results that are significantly different from the optimal. For the three 

problem sizes, the proposed heuristic; HeuVI yielded results that are significantly better 

than other solution methods.  

 

The approximation ratio test was also carried out. The BB results (the optimal solution) 

were used for benchmarking for the problem sizes 5 ≤n ≤ 25 ( small and medium sized 

problems), while the HeuVI results were used for the problem sizes; 30 ≤n ≤ 1000.  

Figures 5.13-5.15 show the approximation ratio for the three problem sizes, respectively. 

(See Appendix II1, Tables J, K and L for the approximation Table for the three problem 

sizes).  
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Figure 5.13:  Plots of approximation ratio for problem sizes 5 ≤n ≤ 10    
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Figure 5.14:  Plots of approximation ratio for problem sizes 15 ≤n ≤ 25   
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Figure 5.15:  Plots of approximation ratio for problem sizes 30 ≤n ≤ 1000   
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From the results, it can be inferred that for problem sizes, 30 ≤ 𝑛 ≤ 40, the GAlg yielded 

the worst result. However, for 30 < 𝑛 < 80,  the GAlg performed better than the 

DMDD. 

 

Furthermore, Tables 5.54-5.56 show the overall means of approximation ratio of all the 

solution methods for the three problem sizes.  Table 5.57a shows the results of the 

optimal count test for the heuristics. The result of t-test on the optimal count is shown in 

Table 5.57b 
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Table 5.54:   The overall mean of approximation ratio for the problem sizes; 5 ≤n 

≤ 10 

Solution method Overall means of approximation ratio 

HeuVI 1.26 

HeuV 1.41 

DMDD 1.60 

GAlg 2.33 

BB 1.00 
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Table 5.55:   The overall mean of approximation ratio for the problem sizes; 10 

≤n ≤ 25 

Solution method Overall means of approximation ratio 

HeuVI 1.38 

HeuV 1.43 

DMDD 1.60 

GAlg 2.64 

BB 1.00 
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Table 5.56: The overall mean of approximation ratio for problem sizes;  

30 ≤n ≤ 1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution method Overall means of approximation ratio 

HeuV 1.006 

GAlg 1.37 

DMDD 1.05 

HeuVI 1.00 
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Table 5.57: The Optimal Count test 

S/No Problem Sizes HeuV HeuVI DMDD GAlg 

1 5 x 1 14 28 6 0 

2 7x1 6 16 4 0 

3 8x1 4 12 2 0 

4 10 x 1 2 8 2 0 

  Mean  6.5 16 3.5 0 

 Standard deviation 5.25 7.12 1.91 0 

5 15x1 0 0 0 0 

6 20 x 1 0 0 0 0 

7 25x1 0 0 0 0 
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Table 5.57b : The t-test for the optimal count result 

Solution methods GAlg HeuV DMDD HeuVI 

GAlg ---- <0.05* <0.05* <0.05* 

HeuV <0.05* ------- >0.05 <0.05* 

HeuVI <0.05* <0.05* <0.05* ------ 

DMDD <0.05* >0.05 --------- <0.05* 
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Furthermore, in order to measure the consistency of the solution methods, the number 

of time each of the methods yielded the minimum value of the LCOF from the fifty 

problem instances were computed and expressed in percentages. This is shown in the 

Table 5.58. It can be deduced that the ranking order from the consistency test is in 

agreement with the results from the other tests. 
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Table 5.58: The consistency test 

S/NO GAlg HeuVI DMDD HeuV Rank 

5 x 1 38 78 52 70 HeuVI, HeuV, DMDD, GAlg 

7x1 24 74 44 66 HeuVI, HeuV, DMDD, GAlg 

8x1 16 60 36 50 HeuVI, HeuV, DMDD, GAlg 

10 x 1 12 52 30 44 HeuVI, HeuV, DMDD, GAlg 

15x1 0 68 10 62 HeuVI, HeuV, DMDD, GAlg  

20 x 1 0 74 5 64 HeuVI, HeuV, DMDD, GAlg 

25x1 0 76 0 42 HeuVI, HeuV, DMDD, GAlg 

30x1 0 68 0 54 HeuVI, HeuV, DMDD, GAlg 

40x1 4 74 14 70 HeuVI, HeuV, DMDD, GAlg 

60x1 8 64 10 60 HeuVI, HeuV, DMDD, GAlg 

80 x1 0 78 0 70 HeuVI, HeuV, DMDD, GAlg 

100 x1 0 70 0 66 HeuVI, HeuV, DMDD, GAlg 

150 x1 0 76 0 72 HeuVI, HeuV, DMDD, GAlg 

200 x1 0 78 0 74 HeuVI, HeuV, DMDD, GAlg 

250 x1 0 80 0 76 HeuVI, HeuV, DMDD, GAlg 

300 x1 0 76 0 72 HeuVI, HeuV, DMDD, GAlg 

400 x1 0 74 0 70 HeuVI, HeuV, DMDD, GAlg 

500 x1 0 80 0 76 HeuVI, HeuV, DMDD, GAlg 

1000 x1 0 82 0 78 HeuVI, HeuV, DMDD, GAlg 
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5.5.2 Results based on the mean execution time 

The execution time of an algorithm is the time taken to solve an instance of a given 

problem by the algorithm. Table 5.59 shows the mean of the total execution time by the 

solution methods and the problem sizes. 
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Table 5.59: Mean of the total execution time by solution methods and problem 

sizes 

 

 

 

 Implemented Proposed  

S/N 
Problem 

Sizes  
GAlg 

DMDD 
HeuV HeuVI BB 

1 5 x 1 0.0064 0.00069 0.00021 0.00024 40.34 

2 7x1 0.0069 0.00072 0.00026 0.00029 1924 

3 8x1 0.0071 0.00072 0.00027 0.00032 3671 

4 10 x 1 0.0076 0.00073 0.00029 0.00035 6542.3 

5 15x1 0.0081 0.00084 0.00036 0.00049 12789.5 

6 20 x 1 0.0093 0.00091 0.00045 0.00064 19876.5 

7 25x1 0.0152 0.00095 0.00057 0.00076 30546.3 

8 30x1 0.016 0.0010 0.00067 0.0011  

9 40x1 0.0237 0.0016 0.00086 0.0081   

10 60x1 0.0223 0.00207 0.00089 0.0011   

11 80 x1 0.0265 0.00298 0.001 0.0098   

12 100 x1 0.0307 0.00372 0.0029 0.0079   

13 150 x1 0.0454 0.00498 0.0035 0.0087   

14 200 x1 0.0533 0.0067 0.0014 0.0097   

15 300 x1 0.0808 0.0772 0.002 0.017   

16 400 x1 0.1032 0.0891 0.0028 0.029   

17 500 x1 0.1528 0.125 0.0032 0.035   

18 1000 x1 0.1943 0.1721 0.0045 0.048   
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Results in the Table 5.59 shows that the HeuVI has the minimum execution time for the 

problem sizes considered.  However, to ascertain whether the differences observed 

between the execution time of the HeuV and other heuristics are significant, t-test was 

also carried out. Tables 5.60-5.62 show the results of the t-test. 
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Table 5.60: The t-test for mean execution time for 5 ≤n ≤ 10 problems 

Solution method GAlg DMDD HeuV HeuVI BB 

GAlg ---- <0.05* <0.05* <0.05* <0.05* 

DMDD <0.05* ------ <0.05* <0.05* <0.05* 

HeuV <0.05* <0.05* ------- >0.05 <0.05* 

HeuVI <0.05* <0.05* >0.05 ------ <0.05* 

BB <0.05* <0.05* <0.05* <0.05* ------- 
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Table 5.61: The t-test for mean execution time for 10 ≤n ≤ 25 problems 

Solution 

method 

GAlg DMDD HeuV HeuVI BB 

GAlg ---- <0.05* <0.05* <0.05* <0.05* 

DMDD <0.05* ------ <0.05* <0.05* <0.05* 

HeuV <0.05* <0.05* ------- >0.05 <0.05* 

HeuVI <0.05* <0.05* >0.05 ------ <0.05* 

BB <0.05* <0.05* <0.05* <0.05* -------- 
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Table 5.62: The t-test for mean execution time for 30 ≤n ≤ 1000 problems 

Solution method GAlg DMDD HeuV HeuVI 

GAlg ---- <0.05* <0.05* <0.05* 

DMDD <0.05* ------ <0.05* <0.05* 

HeuV <0.05* <0.05* ------- >0.05 

HeuVI <0.05* <0.05* >0.05 ------ 

Note: *indicates significant result; Sample size = 50;  -----indicates not necessary 
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The results show that the execution time of the heuristics are significantly different from 

each other (p < 0.05) except the HeuV and HeuVI. The execution time of HeuV and 

HeuVI are not significantly different from each other (p > 0.05). 

 

Furthermore, the approximation ratio test was also carried out. The HeuV was used as 

the standard because it has the lowest execution time. Figures 5.16-5.18 show the plots 

of approximation ratio of the methods (See Appendix 1, Table H for the approximation 

Table). Furthermore, Tables 5.63-5.65 show the overall approximation ratio of the 

solution methods with respect to the HeuV.  
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Figure 5.16:  Plots of approximation ratio for problem sizes 5 ≤n ≤ 10   
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Figure 5.17:  Plots of approximation ratio for problem sizes 15 ≤n ≤ 25   
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Figure 5.18:  Plots of approximation ratio for problem sizes 30 ≤n ≤ 1000   
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Table 5.63: The overall mean of approximation ratio for the problem sizes; 5 ≤n 

≤ 10 

Solution Method Overall means of approximation ratio 

BB 1.1 x 107 

HEUVI 1.16 

DMDD 2.84 

GAlg 27.38 

HEUV 1.00 
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Table 5.64: The overall mean of approximation ratio for the problem sizes; 15 ≤n 

≤ 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution method Overall means of approximation ratio 

BB 4.4  x 107 

HEUVI 1.37 

DMDD 2.01 

GAlg 23.28 

HEUV 1.00 
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Table 5.65: The overall mean of approximation ratio for the problem sizes; 30 ≤n 

≤ 1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution method Overall means of approximation ratio 

HeuVI 6.79 

DMDD 14..90 

GAlg 30.26 

HeuV 1.00 
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The results based on the mean execution time show that the proposed heuristic, HeuV is 

the most efficient solution method compare to other solution methods. For the three 

problems sizes, HeuVI is the closest to the standard efficient solution (HeuV). Therefore, 

comparing the effectiveness and efficiency of the two proposed HeuVI and HeuV, it can 

be inferred that HeuVI should be selected in preference to the HeuV solution method. 

 

5.5.3 Real life results based on the dynamic variant of the bicriteria Problem 

The implemented solution methods for the Class III problem as well as the scheduling 

policy (FCFS) employed by the firm for jobs received on different dates were applied 

on the real life data collected from the firm. The objective was to minimise the composite 

function of total tardiness and total flowtime. The results of the total normalized 

composite function obtained by all the solution methods are shown in Table 5.66.  
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Table 5.66: The mean of normalized total LCOF real life problem 

Problem 

Size 

 

Sample size HEUVI HEUV 

 

DMDD GAlg FCFS 

5x1 

 

20 0.1076 0.1306 

 

0.1461 0.1539 0.1308 

10x1 

 

5 0.2619 0.2936 

 

0.3879 0.4930 0.3299 

15x1 

 

5 0.3682 0.4251 

 

0.5243 0.5671 0.4876 
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In order to advise the firm on the best scheduling policy that suit its environments, the 

gain or loss from the use of any other scheduling policies compared to the FCFS were 

computed. These are shown in Tables 5.67 – 5.70. 
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Table 5.67: Average gain or loss by adopting the HeuV policy 

Problem sizes Sample size HEUV FCFS Difference Remark 

5x1 20 0.1308 0.1310 +0.0002 Gain 

10x1 5 0.2936 0.3299 +0.0363 Gain 

15x1 5 0.4251 0.4876 +0.0625 Gain 
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Table 5.68: Average gain or loss by adopting the HeuVI policy 

Problem sizes Sample size HeuVI FCFS Difference Remark 

5x1 20 0.1076 0.1310 +0.0234 Gain 

10x1 5 0.2619 0.3299 +0.068 Gain 

15x1 5 0.3862 0.4876 +0.1014 Gain 
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Table 5.69: Average gain or loss by adopting the GAlg policy 

Problem 

sizes 

Sample 

size GAlg FCFS Difference Remark 

5x1 20 0.1539 0.1310 -0.0229 Loss 

10x1 5 0.4930 0.3299 -0.1631 Loss 

15x1 5 0.5671 0.4876 -0.0795 Loss 
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Table 5.70: Average gain or loss by adopting the DMDD policy 

Problem sizes 

Sample 

size DMDD FCFS Difference Remark 

5x1 20   0.1461 0.1310 -0.0153 Loss 

10x1 5 0.3879 0.3299 -0.058 Loss 

15x1 5 0.5243 0.4876 -0.0367 Loss 
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However, since the objectives were normalized, the normalized average gains or losses 

were converted to percentage in order to make the best decision with regard to the 

preferred scheduling policy. The percentage gains or losses by adopting a new policy 

are shown in Tables 5.71-5.74. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



212 
 

Table 5.71: Percentage average gain or loss by adopting the HEUVpolicy 

Problem 

sizes Sample size HEUV FCFS %gain (time) Remark 

5x1 20 0.1308 0.1310 +0.16% Gain 

10x1 5 0.2936 0.3299 +0.12% Gain 

15x1 5 0.4251 0.4876 +0.15% Gain 
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Table 5.72: Percentage Average gain or loss by adopting the HeuVI policy 

Problem sizes Sample size HeuVI FCFS %gain (time) Remark 

5x1 20 0.1076 0.1310 +22% Gain 

10x1 5 0.2619 0.3299 +26% Gain 

15x1 5 0.3862 0.4876 +68% Gain 

Mean of Percentage gain by adopting the HeuVI policy 39% 

Standard deviation of Percentage gain by adopting the HEUVI policy ±25.4% 
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Table 5.73: Percentage gain or loss by adopting the GAlg policy 

Problem Size Sample size GAlg FCFS % loss(time) Remark 

5 x 1 20 0.1461 0.1308 -17% Loss 

10x1 5 0.3879 0.3299 -49% Loss 

15x1 5 0.5243 0.4876 -16% Loss  
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Table 5.74: Percentage average gain or loss by adopting the DMDD policy 

Problem sizes Sample size DMDD FCFS % loss Remark 

5x1 20 0.1461 0.1308 -11.7% Loss 

10x1 5 0.3879 0.3299 -17.5% Loss 

15x1 5 0.5243 0.4876 -7.5% Loss 
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Results obtained from Table 5.71 implied that by adopting the HeuV over the existing 

FCFS policy, the firm would experience positive changes (gain) in performance, which 

is expressed as the percentage change in time. 

 

The results in Table 5.72 show that by adopting the HeuVI scheduling policy over the 

existing FCFS policy, the firm would experience a marked positive change (gain) in 

performance, which is expressed as the percentage change in time. The expected 

percentage gains in adopting the HeuVI policy was found to be far better than that of the 

HeuV policy. Thus, the HeuVI scheduling policy is recommended over the HEUV 

policy and the existing FCFS policy. Table 5.73 shows that by adopting the GAlg 

scheduling policy over the existing FCFS policy, the firm would experience a marked 

loss in their effectiveness.  Table 5.74 shows that by adopting the DMDD scheduling 

policy over the existing FCFS policy, the firm would also experience a marked loss of 

effectiveness.  Therefore, HeuVI scheduling policy is recommended for the firm for jobs 

with different release dates. 
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CHAPTER SIX 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1     Introduction 

This chapter highlights the summary of this work, the contribution of the study to 

knowledge and its benefits to the industrial policy. Conclusions were drawn based on 

the results obtained in this study and recommendations for future research are also 

outlined. 

 

6.2  Summary 

This study proposed some heuristics for scheduling problems with total tardiness related 

objectives. Based on the number of objectives and the subjected constraints, the 

problems solved were grouped into three classes: 

CLASS 1:  A scheduling problem of minimizing the 2TRD,  

CLASS II: A bi-criteria scheduling problem of minimizing the 3TFZRD, and 

CLASS III: A bi-criteria scheduling problem of minimizing the 3TFRD. 

 

Six heuristics; HEUI, HEUII, HEUIII, HEUIV, HEUV and HEUVI were proposed. The 

HEUI and HEUII were proposed for the 2TRD problem and compared to the DMDD 

and the SPT from the literature. For the 3TFZRD problem, the HEUIII and HEUIV were 

compared to the HEUA and HEUB from the literature. The GAlg for solving 

multicriteria scheduling problems was also implemented for the problem. Due to the 

complexity status of the 3TFRD scheduling problem, algorithm were sparse that solves 

the problem. Nevertheless, the DMDD as well as the Generalized Algorithm (GAlg) 

were implemented for the problem and compared to the HEUV and HEUVI proposed 

for the problem. The BB was implemented for the problems for benchmarking. Fifty 

instances each for problem sizes ranging from 5-1000 jobs were randomly generated for 

evaluation, using MATLAB. Due to the prohibitive execution time, the BB was explored 

for problem sizes not exceeding twenty-five jobs. Statistically, a sample is referred to as 
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large sample size if the sample size does not fall below 30 (n≥30). Exploring this fact, 

the simulated problems were grouped into the small-sized problems (5≤n≤10), medium-

sized problems (15≤n≤25), and large-sized problems (30≤n≤1000).  

 

Some real life problems involving 5, 10 and 15 jobs were also explored. For the 3TFZRD 

and 3TFRD bicriteria problems, the two objectives were expressed as the composite 

function and normalized. For the 3TFZRD problem, the existing normalization 

procedure in the literature was explored while a new procedure was proposed for the 

static scheduling constraints and applying to the 3TFZRD problem. The proposed 

corollary states that in order to determine the extreme values of a scheduling criterion 

for which a known optimal schedule or solution exists, the schedules corresponding to 

the two extreme values are notional. The corollary is based on the fact that for single 

processor scheduling problems, optimal or near-optimal solutions exist for some single 

criteria scheduling problems with zero release dates.  The mean objective function and 

the mean execution time for all the implemented heuristics for each problem class were 

subjected to the Optimal Count (O.C), t-test (p<0.05), approximation Ratio (A.R) tests 

and consistency test to measure the effectiveness and efficiency of the heuristics for 

proper ranking. 

 

Experimental results as well as the real life results show that the HEUII is recommended 

for small-and-medium sized problems, while the HEUI heuristic is recommended for the  

large-sized problems for 2TRD problem. For the 3TFZRD problem, the HEUIII is 

recommended for the small, medium and large sized problems. HEUVI is also 

recommended for the 3TFRD problem. 

 

6.3 Contribution to Knowledge 

Exploring scheduling approaches to minimise total tardiness related objectives in a 

single processor environment are NP hard problems with numerous application to 

industrial practices. Thus, the problem is of interest to researchers and industrialists. This 

work has contributed to the state of knowledge by proposing an effective and efficient 

scheduling heuristics for solving 2TRD problem. The heuristic (HEUII) yielded the 

results that are not significantly different from the optimal for small and medium sized 

problems (n ≤ 25).   



219 
 

Similarly, two effective and efficient heuristics for the bicriteria scheduling problem of 

minimizing 3TFZRD were also proposed. In terms of effectiveness, the two proposed 

heuristics are not significantly different with respect to the optimal for number of jobs 

not exceeding twenty five jobs. Also the proposed heuristics are statistically better than 

the heuristics found in the literature. For small-sized problems, one of the proposed 

heuristics (HEUIII) yielded an optimal count of 90% on the average. 

 

The need for normalization of objectives in multicriteria scheduling problems and the 

required procedure for non-zero release dates constraint has been established in the 

literature. However, the normalization procedure for multicriteria scheduling problems 

under static condition is a missing link. This work fills the gap.   

 

Customer satisfaction as well as efficient resources utilization is a challenge in 

production and servicing firms. This study shows that there will be a significant boost 

in the effectiveness without compromising the efficiency of a firm exploring the first 

come first serve schedule policy, if the proposed policy in this work is adopted. This was 

reflected in the percentage gain observed when the utility of the proposed heuristics with 

real life data was demonstrated for the 3TFRD. Furthermore, for some firms like 

shipping firms, auto repair firm, auto painting firms, etc, where numerous jobs are 

available simultaneously for processing, there will be a significant boost in performance, 

if the proposed policies were explored compared to the SPT. This was reflected in the 

percentage gain observed when the utility of the proposed heuristics with real life data 

was demonstrated for the 3TFZRD. 

 

6.4 Future Research and Recommendation 

Although the solution methods proposed in this work yielded good results. Further 

research can be carried out by imposing other constraints on all the problem classes. 

Also, more solution methods can be explored, especially for the Class II and Class III 

problems. 

 

6.5 Conclusion 

Based on the results obtained, it was concluded that for the problem of minimizing the 

2TRD, the heuristic HEUII is recommended if the number of job does not exceed 25. 

This is because the method produced a result (in terms of effectiveness) that is not 
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significantly different from the optimal for small problem sizes. Though, the method 

requires a significantly different execution time from the most efficient method (SPT), 

the HEUII heuristic is polynomially-time bound.  However, if the number of 

accumulated jobs is greater than twenty-five (25), the heuristic HEUI is recommended. 

This is because the method yielded the most effective results compared to other 

heuristics. For the bicriteria scheduling problem of minimizing 3TFZRD, the heuristics; 

HEUIII is recommended. This is because the solution method yielded results that are not 

significantly different from the optimal for small sized problems (n ≤ 25) and also 

produced an optimal of 90% on the average.  Also, the method obtains a polynomial-

time bound. For the bicriteria scheduling problem of minimizing 3TFZRD, the HEUVI 

heuristic is recommended.  Though the model yields results that are significantly 

different from the optimal. The approximation ratio tests for the small and medium sized 

problems show that the method is effective in solving the problem. In terms of 

effectiveness, the method is also significantly better than other solution method. 
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APPENDIX A1 : Validity of the Normalization Procedure  

This example will justify the need for normalization as well as the validity of the 

proposed corollary. Consider a single machine, 4 jobs bicriteria scheduling problem for 

minimizing the total flowtime and the total number of tardy jobs. The processing time 

and the due date of each jobs as shown in Table A.         
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   Table A: Hypothetical problem to illustrate the need for normalization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Job P (hour) D(hour) 

1 3.0 5 

2 5.5 4 

3 3.5 6 

4  7.0 10 
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SPT algorithm yields optimal solution for the total flow time only. In this work, SPT 

schedule is 1, 3, 2, 4. The schedule can be represented by chant chart as shown in Figure 

A 
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Figure A1: The Gantt chart of the SPT schedule. 
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The optimal total flowtime produced by SPT = 3.0 + 6.5 + 12 + 19 = 40.5hour 

The total number of tardy jobs produced by SPT = 3jobs 

Assuming the two criteria have equal weight of 0.5. 

Without normalization, the composite objective function is given by; 

F(X,Y) =  𝛼 X + 𝛽 Y  =  0.5(40.5) hour + 0.5(3)jobs     

 20.25hours + 1.5job =  21.75 ( hour +job) 

Therefore, this is an unbalanced LCOF since the unit of flow time and number of tardy 

jobs are not the same. Similarly, the SPT does not yield a good result for total tardiness 

problem. However, this becomes insignificant in the LCOF because flow time objective 

dominates over that of the number of tardy jobs. Thus the LCOF is biased or skewed 

towards the flow time. 

 

With normalization 

Argument against the corollary 

SPT algorithm yields optimal solution for the total flow time only. In this work, SPT 

schedule is 1, 3, 2, 4. The schedule can be represented by chant chart as shown in Figure 

A2 
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Figure A2.  The Gantt chart of the SPT schedule. 
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The optimal total flowtime produced by SPT = 3.0 + 6.5 + 12 + 19 = 40.5hour 

The minimum possible total flow time, 𝐹𝑘 = 𝑃1   + {∑ 𝑃𝑖 +   ∑ 𝑃𝑖  
𝑛
𝑖=2

𝑘−1
𝑖=1 }  

=  3.0 + (3 + 3.5 ) + (3 + 3.5 + 5.5 ) + (3 + 3.5 + 5.5 + 7.0) = 40.5ℎ𝑜𝑢𝑟 

The maximum possible total flow time = 𝑃1 + ∑ {∑ 𝑃𝑖 + 𝑃𝑘
𝑘−1
𝑖=1 }𝑛

𝑘=2  

=  3.0 + ( (3.0 + 3.5)  +  (3.0 + 3.5 + 5.5)  +  (3.0 + 3.5 + 5.5  +  7.0) 

3.0 +  6.5 +  12 +  19 =  40.5 hours 

The normalized value of flow time is given by; 

                   𝑋𝑁 = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
   = 

40.5−40.5

40.5−40.5
    = 

0ℎ𝑜𝑢𝑟𝑠

0ℎ𝑜𝑢𝑟𝑠
    = indeterminate 

 

Argument in favour of the corollary 

The minimum possible total flowtime, 𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝑃𝑖

𝑛
1 = 3.0 +  3.5 + 5.5 + 7.0 = 19  

The maximum possible total flowtime = 𝑛{∑ 𝑃𝑖
𝑛−1
𝑖=1 }  +  ∑ 𝑃𝑖

𝑛
𝑖=1   

4(3 + 3.5 + 5.5)  +  (3 + 3.5 + 5.5 + 7.0)  =  4(12)  +  19 =  48 + 19 

=  67ℎ𝑜𝑢𝑟𝑠 

The normalized value of flow time is given by; 

 𝑋𝑁 = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
   = 

40.5−19

67−19
    = 

21.5ℎ𝑜𝑢𝑟𝑠

48ℎ𝑜𝑢𝑟𝑠
    = 0.4479 

The total number of tardy jobs produced by SPT = 3 

The minimum possible number of tardy jobs  = 0 

The maximum possible number of tardy jobs  = number of jobs= 4 

The normalized value of total number of tardy jobs is given by; 

 𝑋𝑁 = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
   = 

3−0

4−0
    = 

3𝑗𝑜𝑏𝑠

4𝑗𝑜𝑏𝑠
    = 0.75 

The composite objective function; 

F(X,Y) =  𝛼 X + 𝛽 Y   = (0.5) 0.4479 + (0.5) 0.75 = 0. 4515 

 

This is a balanced LCOF since both the flow time and the number of tardy jobs have 

been converted to a dimensionless parameter by normalization. Similarly, none of the 

objectives dominates the other. The high value of the normalized total number of tardy 

jobs observed is due to the fact that SPT does not produce a good result for scheduling 



237 
 

problems to minimise the number of tardy jobs. Similarly, the lower value of 

normalized flow time observed is due to the fact that SPT yields the optimal for flow 

time single machine scheduling problem with zero release dates. Thus, a balanced and 

unbiased composite objective function is obtained by normalization. 
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APPENDIX AII: Code Listing :  Pseudocode of the scheduling problem 

generation for SPTTP with release dates problems (CLASS I) 

 

Code Written by : Saheed Akande 

Language : MATrix LABoratory 

Date : June 2016 

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE  

PROCESSOR SCHEDULING PROBLEMS WITH  

TARDINESS- RELATED PERFORMANCE MEASURES 

Department : Industrial and Production Engineering 

 

MinProcessTime = 1; 
MaxProcessTime = 10; 
ProcessTimeGen = 9; 
MaxReleaseDate = 40; 
MinReleaseDate =0; 
nojobs = 5; 
rowc = 5; 
wtime = zeros(rowc, nojobs); 
ProcessTime = zeros(rowc, nojobs); 
ReleaseDate = zeros(rowc, nojobs); 
DueDate = zeros(rowc, nojobs); 
MaxProcessTimeDDC = zeros(rowc, nojobs); 
MinProcessTimeDDC = zeros(rowc, nojobs); 
ProcessTimeDDCGen = zeros(rowc, nojobs); 
Jobs = zeros(rowc, nojobs); 

  
for row = 1:rowc  

     
    Jobs(row, :) = 1:nojobs; 
    ProcessTime(row, :) = floor(ProcessTimeGen *rand([1, nojobs]))+1; 

     
    ReleaseDate(row, :) = floor(MaxReleaseDate *rand([1,nojobs])); 

     
    MaxProcessTimeDDC(row, :) = 4*ProcessTime(row, :); 

     
    MinProcessTimeDDC(row, :) = 1* ProcessTime(row, :); 

     
    ProcessTimeDDCGen(row, :) = MaxProcessTimeDDC(row, :) –  

MinProcessTimeDDC(row, :) ; 

  
    DueDate(row, :) =  (ReleaseDate(row, :)) + 

(floor(ProcessTimeDDCGen(row, :).*rand([1,nojobs]))+ 

1*MinProcessTimeDDC(row, :) ); 

   
end 

  
save('problemG.mat','Jobs', 'ProcessTime', 'ReleaseDate', 'DueDate') 
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APPENDIX AII: Code Listing :  Pseudocode of the single instance solution for 

Heu IIfor SPTTP with release dates problems (CLASS I) 

 

Code Written by : Saheed Akande 

Language : MATrix LABoratory 

Date : June 2016 

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE  

PROCESSOR SCHEDULING PROBLEMS WITH  

TARDINESS- RELATED PERFORMANCE MEASURES 

Department : Industrial and Production Engineering 

 

function [execTime, sumtard, order] = 

AA6Instance(processTime,releaseDate, dueDate) 
% execTime is the time to run an instant of problem 
% lcof is the linear composite objective function of an instant of 

problem 
% order is the final schedule of an instant of problem 
% 

  

  
tic 

         
noJobs = length(processTime); % n = number of jobs = length of array 

processTime 
                                   %or releaseDate or dueDate 

                                    
        FactorTime = dueDate; 

         
        FactorTime1 = processTime + releaseDate; 

         
    [SortedFactorTime,JobSetB] = sort(FactorTime); 

     
    [SortedFactorTime1,JobSetC] = sort(FactorTime1); 

     
    CompletionTimeJobSetB =  zeros(1, noJobs); 

     
    for k = 1 

         
    CompletionTimeJobSetB(1) = processTime(JobSetB(1)) + 

releaseDate(JobSetB(1)); 

     
    end  

     
    for k = 2:noJobs 

         
        if  CompletionTimeJobSetB(k-1)> releaseDate(JobSetB(k)) 

         
        CompletionTimeJobSetB(k) = CompletionTimeJobSetB(k-1) + 

processTime(JobSetB(k)); 
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        else 
            CompletionTimeJobSetB(k) = releaseDate(JobSetB(k))+ 

processTime(JobSetB(k)); 
        end 
    end 

     
    TardinessJobSetB = zeros(1, noJobs); 

     
    for k =1:noJobs 

         
        if CompletionTimeJobSetB(k)> dueDate(JobSetB(k)) 

             
            TardinessJobSetB(k) = CompletionTimeJobSetB(k) - 

dueDate(JobSetB(k)); 

        
        end 
    end 

     
    SumTardJobSetB = sum(TardinessJobSetB); 

  
     CompletionTimeJobSetC =  zeros(1, noJobs); 

     
    for k = 1 

         
    CompletionTimeJobSetC(1) = processTime(JobSetC(1))+ 

releaseDate(JobSetC(1)); 

     
    end  

     
    for k = 2:noJobs 

         
        if CompletionTimeJobSetC(k-1) > releaseDate(JobSetC(k)) 

                 
                CompletionTimeJobSetC(k) = CompletionTimeJobSetC(k-1) 

+ processTime(JobSetC(k)); 

                         
        else 

                   
            CompletionTimeJobSetC(k) =  releaseDate(JobSetC(k))  + 

processTime(JobSetC(k)); 

              
        end 

         
    end 

         

     
    TardinessJobSetC = zeros(1, noJobs); 

     
    for k =1:noJobs 

         
        if CompletionTimeJobSetC(k)> dueDate(JobSetC(k)) 

             
            TardinessJobSetC(k) = CompletionTimeJobSetC(k) - 

dueDate(JobSetC(k)); 

        
        end 
    end 



241 
 

     
    SumTardJobSetC = sum(TardinessJobSetC); 

     

  
    OptSeq = zeros(1, noJobs); 

                   
    for k =  1 : noJobs 

         
       if TardinessJobSetB(k) - TardinessJobSetC(k) <= 0  

            
       OptSeq(k) = JobSetB(k); 

        
       else 

            
            OptSeq(k) = JobSetC(k); 
       end  

       
     end 

     

     
    N = OptSeq; 

     
    JobSetU = RTW.unique(OptSeq); 

     
    L = length(JobSetU); 

     
    NoRepJobs = noJobs - L; 

     
    [JobNotSch1, indexINB] = setdiff(JobSetB, OptSeq); 

     

     
    [JobNotSch2, indexINC] = setdiff(JobSetC, OptSeq);    

     
      FOptSeq = [JobSetU,JobNotSch2]; 

    
    CompletionTimeFOptSeq =  zeros(1, noJobs); 

      
     for k = 1 

  
     CompletionTimeFOptSeq(1) = processTime(FOptSeq(1))+ 

releaseDate(FOptSeq(1)) ; 

     
    end  

     
    for k = 2:noJobs 

         
        if CompletionTimeFOptSeq(k-1)> releaseDate(FOptSeq(k-1)) 

         
        CompletionTimeFOptSeq(k) = CompletionTimeFOptSeq(k-1) + 

processTime(FOptSeq(k)); 
        else 

             
         CompletionTimeFOptSeq(k) = processTime(FOptSeq(k))+ 

releaseDate(FOptSeq(k)) ;    
        end 
    end 
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    TardinessFOptSeq = zeros(1, noJobs); 

     
    for k =1:noJobs 

         
        if CompletionTimeFOptSeq(k)> dueDate(FOptSeq(k)); 

             
            TardinessFOptSeq(k) = CompletionTimeFOptSeq(k) - 

dueDate(FOptSeq(k)); 
        end 
    end 

     
    if sum(TardinessJobSetC) > sum(TardinessFOptSeq) 

         
        sumtard = sum(TardinessFOptSeq); 

             
            execTime = toc; 

             
            order = FOptSeq; 

     
    else 

            
            sumtard = sum(TardinessJobSetC) ; 

             
            execTime = toc; 

             
            order = JobSetC; 
    end 

            
end 
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APPENDIX AII: Code Listing :  Pseudocode of the Execution file for HeuII for 

SPTTP with release dates problems (CLASS I) 

 

Code Written by : Saheed Akande 

Language : MATrix LABoratory 

Date : June 2016 

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE  

PROCESSOR SCHEDULING PROBLEMS WITH  

TARDINESS- RELATED PERFORMANCE MEASURES 

Department : Industrial and Production Engineering 

 

 

function [meanSUMTARD,meanExecTime,SUMTARD,ORDER] = 

ExecuteAA6(ProcessTime,ReleaseDate, DueDate, Algo) 

     
    [noProbs, noJobs] = size(ProcessTime); 
    EXECTIME = zeros(noProbs, 1); 
    SUMTARD = zeros(noProbs, 1); 
    ORDER = zeros(noProbs, noJobs); 

     
    for  probs = 1: noProbs 

         
        processTime = ProcessTime(probs,:); 
        dueDate = DueDate(probs,:); 
        releaseDate = ReleaseDate(probs,:); 

         
        [execTime, sumtard, order] = Algo(processTime,releaseDate, 

dueDate); 

         
        EXECTIME(probs) = execTime; 
       SUMTARD(probs) = sumtard; 
        ORDER(probs,:) = order; 

         
    end 

     
    meanSUMTARD = mean(SUMTARD); 
    meanExecTime = mean(EXECTIME); 
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APPENDIX AII: Code Listing :  Pseudocode of the Run Problem for HeuII for 

SPTTP with release dates problems (CLASS I) 

 

Code Written by : Saheed Akande 

Language : MATrix LABoratory 

Date : June 2016 

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE  

PROCESSOR SCHEDULING PROBLEMS WITH  

TARDINESS- RELATED PERFORMANCE MEASURES 

Department : Industrial and Production Engineering 

 

 

 
clear all; 

   
load('problemG.mat','Jobs', 'ProcessTime', 'ReleaseDate', 'DueDate'); 

  
Algo = @AA6Instance; 

  
[meanSUMTARD, meanExecTime, SUMTARD, ORDER] = 

ExecuteAA6(ProcessTime,ReleaseDate,DueDate, Algo); 
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    APPENDIX AII: Code Listing :  Pseudocode of the scheduling problem 

generation for static problems (CLASS II) 

 

Code Written by : Saheed Akande 

Language : MATrix LABoratory 

Date : June 2016 

Project: Ph.D Thesis - DEVELOPMENT OF HEURISTICS FOR SINGLE  

PROCESSOR SCHEDULING PROBLEMS WITH  

TARDINESS- RELATED PERFORMANCE MEASURES 

Department : Industrial and Production Engineering 

     

 MinProcessTime = 1; 
MaxProcessTime = 10; 
ProcessTimeGen = 9; 
nojobs = 200; 
rowc = 50; 
wtime = zeros(rowc, nojobs); 
ProcessTime = zeros(rowc, nojobs); 
ReleaseDate = zeros(rowc, nojobs); 
MaxDueDate = zeros(rowc, nojobs); 
MinDueDate = zeros(rowc, nojobs); 
DueDateGen = zeros(rowc, nojobs); 
DueDate = zeros(rowc, nojobs); 
Jobs = zeros(rowc, nojobs); 

  

  
for row = 1:rowc  

     
    Jobs(row, :) = 1:nojobs; 

  
    ProcessTime(row, :) = floor(ProcessTimeGen *rand([1, nojobs]))+1; 

     
    MaxDueDate(row, :) = 4*ProcessTime(row, :); 

     
    MinDueDate(row, :) = 1* ProcessTime(row, :); 

     
    DueDateGen(row, :) = MaxDueDate(row, :) - MinDueDate(row, :);  

  
    DueDate(row, :) = (floor(DueDateGen(row, :).*rand([1,nojobs]))+ 

1*MinDueDate(row, :)); 

   
end 

  
save('problemR.mat', 'Jobs' ,'ProcessTime', 'ReleaseDate', 'DueDate') 
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APPENDIX A111: Tables of Approximation Ratio:  

The approximation ratio Tables for the three problem classes solved and the problem 

sizes in each case were given in Tables B –M 
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Table B: The approximation ratio for the small-sized problem of Class 1 

S/No Problem Sizes HEUI  HEUII  DMDD SPT  BB 

1 5 x 1 16.62 3.69 10.85 147.77 1 

2 7x1 2.51 1.197 3.04 15.98 1 

3 8x1 1.42 1.17 1.7 10.99 1 

4 10 x 1 1.57 1.35 2.08 8.13 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



248 
 

Table C: The approximation ratio for the medium-sized problems for Class 1 

S/No Problem Sizes HEUI  HEUII  DMDD SPT  BB 

3 15x1 1.78 1.73 1.99 4.85 1 

4 20 x 1 1.43 1.38 1.43 2.55 1 

5 25x1 1.56 1.54 1.57 2.39 1 
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Table D: The approximation ratio for the large –sized problems (30 ≤ n ≤ 1000) 

for Class 1 

S/No Problem Sizes HEUI  HEUII DMDD SPT  

6 30x1 1.00 1.17 1.1 1.53 

7 40x1 1.00 1.06 1.02 1.22 

8 60x1 1.00 1.11 1.07 1.12 

9 80 x1 1.00 1.1 1.06 1.05 

10 100 x1 1.00 1.15 1.11 1.06 

11 150 x1 1.00 1.17 1.13 1.03 

12 200 x1 1.00 1.18 1.15 1.01 

13 300 x1 1.00 1.19 1.16 1.01 

14 400 x1 1.00 1.22 1.18 1 

15 500 x1 1.00 1.22 1.18 1 

16 1000 x1 1.00 1.24 1.2 1 
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Table E: The approximation ratio of execution time for Class 1 problem sizes 5 ≤ 

n ≤ 1000. 

S/No Problem Sizes HEUI HEUII DMDD SPT BB  

1 5 x 1 3.13 3.23 3.44 1.00 1476923 

2 7x1 3.05 3.2 3.35 1.00 4810000 

3 8x1 3.1 3.25 3.35 1.00 7800000 

4 10 x 1 3.23 3.32 3.47 1.00 1.5E+07 

5 15x1 3.38 3.43 3.82 1.00 2.2E+07 

6 20 x 1 3.07 3.31 3.72 1.00 3.8E+07 

7 25x1 2.76 2.83 3.52 1.00   

8 30x1 2.66 2.84 3.51 1.00   

9 40x1 2.71 2.71 5.09 1.00   

10 60x1 2.66 2.72 6.28 1.00   

11 80 x1 2.48 2.54 7.89 1.00   

12 100 x1 24.66 24.93 97.05 1.00   

13 150 x1 0.24 0.24 1.21 1.00   

14 200 x1 2.89 2.91 13.83 1.00   

15 300 x1 0.91 0.91 99.16 1.00   

16 400 x1 1.12 1.13 138.29 1.00   

17 500 x1 11.21 1.12 129.06 1.00   

18 1000 x1 9.99 10.1 148.26 1.00   
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Table F: The approximation ratio for Class II problem sizes 5≤n≤ 10 

S/N Problem sizes GAlg HEUA HEUB HEUIII HEUIV BB 

1 5x1 1.05 1.03 2.01 1.00 1.11 1.00 

2 7x1 1.04 1.04 1.86 1.00 1.03 1.00 

3 8x1 1.03 1.06 1.81 1.00 1.04 1.00 

4 10x1 1.00 1.05 1.70 1.00 1.01 1.00 
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Table G: The approximation ratio for medium-sized problems 15≤n≤ 25 (Class II) 

S/N 
Problem 

sizes 
GAlg HEUA HEUB HEUIII HEUIV BB 

5 15x1 1.00 1.07 1.70 1.00 1.00 1.00 

6 20x1 1.00 1.07 1.66 1.00 1.00 1.00 

7 25x1 1.00 1.07 1.69 1.00 1.00 1.00 
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Table H: The approximation ratio for large-sized problems (30≤n≤ 1000) 

S/N Problem sizes GAlg HEUA HEUB HEUIV HEUIII 

6 30x1 1.03 1.06 1.68 1.02 1.00 

7 40x1 1.04 1.07 1.66 1.01 1.00 

 8 60x1 1.00 1.07 1.69 1.02 1.00 

 9 80 x1 1.10 1.07 1.69 1.02 1.00 

 10 100 x1 1.00 1.07 1.68 1.00 1.00 

 11 150 x1 1.00 1.07 1.68 1.2 1.00 

 12 200 x1 1.00 1.07 1.69 1.00 1.00 

 13 300 x1 1.21 1.07 1.68 1.04 1.00 

 14 400 x1 1.00 1.08 1.68 1.02 1.00 

  15 500 x1 1.03 1.07 1.68 1.00 1.00 

 16 1000 x1 1.00 1.08 1.70 1.03 1.00 
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Table I: The approximation ratio of execution time for Class 1I problem sizes  

S/N Problem Sizes GAlg  HEUB  HEUA  Heu III  HeuIV  BB  

1 5 x 1 5.54 1.25 1 2.46 3.33 3069444 

2 7x1 5.29 1.19 1 2.57 4.29 4303029 

3 8x1 5.14 1.15 1 2.5 4.4 4465903 

4 10 x 1 5.13 1.12 1 2.52 4.12 4084847 

5 15x1 4.71 1.03 1 2.41 5 5825811 

6 20 x 1 4.89 1.02 1 2.5 6.17 7929298 

7 25x1 5.71 0.99 1 2.76 6.59 9428474 

8 30x1 6.8 1.1 1 3 6.91   

9 40x1 6 0.9 1 2.2 6.75   

10 60x1 4.87 1.2 1 3 4.89   

11 80 x1 4.4 0.95 1 4.5 6   

12 100 x1 4 0.92 1 4.41 6.2   

13 150 x1 5.17 1.23 1 5.6 6.22   

14 200 x1 4.8 1 1 3.9 6.93   

15 300 x1 4.42 0.89 1 3.53 6.95   

16 400 x1 4.62 1 1 3.72 6.38   

17 500 x1 4.7 1 1 3.95 6.44   

18 1000 x1 5.19 1 1 4.36 5.79   
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Table J: The approximation ratio for small-sized problem (5≤n≤ 10) of Class III 

Problem Size  GAlg DMDD HEUV HEUVI  BB 

5 x 1 2.15 1.77 1.47 1.39 1.00 

7x1 2.23 1.46 1.34 1.2 1.00 

8x1 2.38 1.54 1.47 1.24 1.00 

10 x 1 2.55 1.61 1.37 1.22 1.00 
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Table K: The approximation ratio for Class III problem sizes 15≤n≤ 25 

Problem sizes GAlg DMDD HEUV HEUVI BB 

15x1 3.21 1.88 1.59 1.52 1.00 

20 x 1 2.38 1.44 1.34 1.28 1.00 

25x1 2.34 1.44 1.36 1.36 1.00 
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Table L: The approximation ratio for large-sized problems (30≤n≤ 1000) for 

Class III. 

Problem Sizes  GAlg DMDD HEUV HEUVI 

30x1 1.65 1.04 1.03 1.00 

40x1 1.59 1.02 1.01 1.00 

60x1 1.02 1.48 1.02 1.00 

80 x1 1.43 1.01 1.01 1.00 

100 x1 1.43 1.01 1.01 1.00 

150 x1 1.4 1.01 1.01 1.00 

200 x1 1.37 1.01 1.00 1.00 

300 x1 1.36 1.01 1.00 1.00 

400 x1 1.36 1.00 1.00 1.00 

500 x1 1.36 1.00 1.00 1.00 

1000 x1 1.36 1.00 1.00 1.00 
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Table M: The approximation ratio for Class III problem sizes 5≤n≤ 1000 (for 

efficiency) 

Problem Sizes GAlg DMDD HEUV HEUVI BB 

5 x 1 30.48 3.29 1.00 1.14 192095 

7x1 26.54 2.77 1.00 1.12 7400000 

8x1 26.29 2.67 1.00 1.19 13596296 

10 x 1 26.21 2.52 1.00 1.21 2.3E7 

15x1 22.5 2.33 1.00 1.36 3.6E7 

20 x 1 20.67 2.02 1.00 1.42 4.4E7 

25x1 26.67 1.67 1.00 1.33 5.4E7 

30x1 23.88 1.49 1.00 1.64  

40x1 27.56 1.86 1.00 9.42  

60x1 25.06 2.33 1.00 1.24  

80 x1 26.5 2.98 1.00 9.8  

100 x1 10.59 1.28 1.00 2.72  

150 x1 12.97 1.42 1.00 2.49  

200 x1 38.07 4.79 1.00 6.93  

300 x1 40.4 38.6 1.00 8.5  

400 x1 36.86 31.82 1.00 10.36  

500 x1 47.75 39.06 1.00 10.93  

1000 x1 43.18 38.24 1.00 10.67  

 


